Explorando a virada dos dados na filosofia da linguagem na era do big data



Filosofia da linguagem, Grandes dados, Virada de dados, Análise quantitativa


A coleta de dados em nossa era da Tecnologia da Informação causou uma revolução no conhecimento. O crescimento sem precedentes dos dados na era do big data exigiu mudanças na escala, natureza e estatuto dos dados, levando os investigadores a adoptar novos paradigmas e metodologias na investigação filosófica. Em particular, o foco teórico da filosofia da linguagem mudou para o conhecimento cognitivo, com ênfase na proposição da virada dos dados na cognição cognitiva na era do big data. Este artigo explora o escopo potencial para a pesquisa quantitativa sobre a virada de dados da filosofia da linguagem, examinando a necessidade de transformar paradigmas de pesquisa qualitativa e quantitativa, reconstruindo a abordagem quantitativa da filosofia da linguagem e expandindo as relações humanos-dados na filosofia da linguagem. grandes dados. O artigo conclui pela necessidade de mais pesquisas para examinar a relação entre linguagem, dados e filosofia.


Não há dados estatísticos.

Biografia do Autor

Shasha Xu, Zhejiang University of Finance & Economics

Ph. D. Associate Professor. School of Foreign Languages, Zhejiang University of Finance & Economics, Hangzhou, 310018 – China. Orcid: https://orcid.org/0000-0003-0597-3517.

Qian Yang, Zhejiang University of Finance & Economics

School of Foreign Languages, Zhejiang University of Finance & Economics, Hangzhou, 310018 – China. Orcid: https://orcid.org/0000-0001-5422-7022.


AGERRI, R.; ARTOLA, X.; BELOKI, Z. et al. Big Data for Natural Language Processing: A Streaming Approach. Knowledge-Based Systems, v. 79, n. 5, p. 36-42, 2015.

ALBALADEJO, T. Retórica Cultural, Lenguaje Retórico Y Lenguaje Literario. Tonos Digital, v. 25, p. 1-21, 2013.

ARPPE, A.; JARVIKIVI, J. Every Method Counts: Combining Corpus-based and Experimental Evidence in the Study of Synonymy. Corpus Linguistics and Linguistic Theory, v. 3, n. 2, p. 131-159, 2007.

AUSTIN, J. L. How to Do Things with Words. Oxford: The Oxford University Press, 1962.

AYER, A. J. Language, Truth and Logic. London: Victor Gollancz, 1946.

BAKER, M. C. The Polysynthesis Parameter. Oxford: Oxford University Press, 1996.

BASDEN, A.; KLEIN, H. K. New Research Directions for Data and Knowledge Engineering: A Philosophy of Language Approach. Data & Knowledge Engineering, v. 67, n. 2, p. 260-285, 2008.

BOGEN, J. Noise in the World. Philosophy of Science, v. 77, n. 5, p. 778-791, 2010.

BOYD, D.; CRAWFORD, K. Critical Questions for Big Data: Provocations for a Cultural, Technological, and Scholarly Phenomenon. Information, Communication & Society, v. 15, n. 5, p. 662-679, 2012.

BURNET, J. Greek Philosophy: Thales to Plato. London: Macmillan, 1914.

CAI, L.; ZHU, Y. The Challenges of Data Quality and Data Quality Assessment in the Big Data Era. Data Science Journal, v. 14, n. 2, p. 1-10, 2015.

CALUDE, C.S.; LONGÒ, G. The Deluge of Spurious Correlations in Big Data. Foundations of Science, v. 22, n. 3, p. 595-612, 2017.

CASSIRER, E. The Philosophy of Symbolic Forms: Volume 4 - The Metaphysics of Symbolic Forms. New Haven: Yale University Press, 1996.

COSTA, A. da. The Pardoner’s Passing and How It Matters Gender, Relics and Speech Acts. Critical Survey v. 29, n. 3, p. 27-47, 2017.

DE REGT, H. W. Understanding Scientific Understanding. Oxford: Oxford University Press, 2017.

DERRIDA, J. The Supplement of Copula: Philosophy before Linguistics. The Georgia Review, v. 30, n. 3, p. 527-564, 1976.

DEVITT, M. Testing Theories of Reference. In: HAUKIOJA, J. (ed.). Advances in Experimental Philosophy of Language. London & New York: Bloomsburry, 2015.

DUMMETT, M. Origins of Analytical Philosophy. Bloomsbury: Bloomsbury Academic, 2014.

ERL, T.; KHATTAK, W.; BULLER, P. Big Data Fundamentals: Concepts, Drivers and Techniques. Boston: Prentice Hall, 2016.

FLORIDI, L.; ILLARI, P. The Philosophy of Information Quality. Cham: Springer International, 2014.

FLORIDI, L. The Philosophy of Information. Oxford: Oxford University Press, 2011.

FREGE, G. Über Sinn und Bedeutung. Zeitschrift für Philosophie und philosophische Kritik, v. 100, p. 25-50, 1892.

FURNER, J. Philosophy of Data: Why? Education for Information, v. 33, n. 1, p. 55-70, 2017.

GAWDE, S.; PATIL, S.; KUMAR, S. et al. Multi-fault diagnosis of Industrial Rotating Machines using Data-driven approach: A review of two decades of research. Engineering Applications of Artificial Intelligence. v. 123, Part A, August 2023, p. 106-139, 2023.

HAIG, B. D. Big data science: A Philosophy of Science Perspective. In: WOO, S. E.; TAY, L.; PROCTOR, R. W. (ed.). Big Data in Psychological Research. Washington: American Psychological Association, p. 15-33, 2020.

HALLIDAY, M. A. K. Language as Social Semiotic. London: Edward Arnold, 1978.

HATIM, B.; MASON, I. Discourse and the Translator. New York: Routledge, 2014.

HOUSE, J. Translation Quality Assessment: A Model Revisited. Tübingen: Gunter Narr, 1997.

JAKOBSON, R. The Metaphoric and Metonymic Poles. In: JAKOBSON, R.; HALLE, M. (ed.). Fundamentals of Language. The Hague/Paris: Mouton, p. 90-96, 1956.

JIANG, Y.; BAI, T. Studies in Analytic Philosophy in China. Synthese, v. 175, n. 1, p. 3-12, 2010.

JI, C.; LI, Y.; QIU, W. et al. Big Data Processing: Big Challenges and Opportunities. Journal of Interconnection Networks, v. 13, n. 3, p. 1-19, 2012.

JIN, X.; WAH, B. W.; CHENG, X. et al. Significance and Challenges of Big Data Research. Big Data Research, v. 2, n. 2, p. 59-64, 2015.

KAPCHAN, D. A. Performance + In folklore. Journal of American Folklore, v. 108, n. 430, p. 479-508, 1995.

KING, G.; KEOHANE, R. O.; VERBA, S. Designing Social Inquiry: Scientific Inference in Qualitative Research. Princeton: Princeton University Press, 2021.

KITCHIN, R. Big Data, New Epistemologies and Paradigm Shifts. Big Data & Society, v. 1, n. 1, p. 1-12, 2014.

LAKOFF, G.; JOHNSON, M. The Metaphorical Logic of Rape. Metaphor and Symbol, v. 2, n. 1, p. 73-79, 1987.

LAU, J. Y. F.; CHAN, J. K. L. A Brief History of Analytic Philosophy in Hong Kong. Asian Journal of Philosophy, v. 1, n. 1, p. 1-20, 2022.

LEONELLI, S. Data-Centric Biology: A Philosophical Study. Chicago: University of Chicago Press, 2016.

LOSONSKY, M. Linguistic Turns in Modern Philosophy. Cambridge: Cambridge University Press, 2006.

LUTZ, S. Artificial Language Philosophy of Science. European Journal for Philosophy of Science, v. 2, n. 2, p. 181-203, 2012.

MACHERY, E. Thought Experiments and Philosophical Knowledge. Metaphilosophy, v. 42, n. 3, p. 191-214, 2011.

MITTELSTADT, B. The Ethics of Biomedical ‘Big Data’ Analytics. Philosophy & Technology, v. 32, p. 17-21, 2019.

O’LEARY, D. E. Artificial Intelligence and Big Data. IEEE Intelligent Systems, v. 28, n. 2, p. 96-99, 2013.

OLSHER, D. Semantically-based Priors and Nuanced Knowledge Core for Big Data, Social AI, and Language Understanding. Neural Networks, v. 58, n. 10, p. 131-147, 2014.

ONG, Y. P. The Language of Advertising and the Novel: Naipaul's A House for Mr. Biswas, Twentieth Century Literature v. 56, n. 4, p. 462-492, 2010.

PREUS, A.; ANTON, J. P. Essays in Ancient Greek Philosophy V: Aristotle’s Ontology. New York: State University of New York Press, 1992.

RIZK, A.; ELRAGAL, A. Data Science: Developing Theoretical Contributions in Information Systems Via Text Analytics. Journal of Big Data, v. 7, p. 1-26, 2020.

RORTY, R. M. The Linguistic Turn: Recent Essays in Philosophical Method. Chicago: University of Chicago Press, 1967.

RUSSELL, B. On denoting. Mind, v. 14, n. 4, p. 479-493, 1905.

SÆTRA, H. S. Science as a Vocation in the Era of Big Data: The Philosophy of Science behind Big Data and Humanity’s Continued Part in Science. Integrative Psychological and Behavioral Science, v. 52, n. 4, p. 508-522, 2018.

SCHÖNBERGER, V. M.; CUKIER, K. Big Data: A Revolution that will Transform How We Live, Work and Think. New York: Houghton Mifflin Harcourt, 2013.

SEARLE, J. Speech Acts. An Essay in the Philosophy of Language. Cambridge: Cambridge University Press, 1969.

SHARDLOW, M.; SELLAR, S.; ROUSELL, D. Collaborative Augmentation and Simplification of Text (CoAST): Pedagogical Applications of Natural Language Processing in Digital Learning Environments. Learning Environment Research, v. 25, n. 2, p. 399-421, 2022.

SLOTA, S. C.; HOFFMAN, A. S.; RIBES, D. et al. Prospecting (in) the Data Sciences. Big Data & Society, v. 7, n. 1, p. 1-12, 2020.

SPENCER, M. Pali Grammar: The Language of the Canonical Texts of Theravada Buddhism, vol 1 Buddhist Studies Review, v. 37, n. 1, p. 117-126, 2020.

SPERBER, D.; WILSON, D. Relevance: Communication and Cognition. Cambridge, MA: Harvard University Press, 1986.

SUN, G.; LI, F.; JIANG, W. Brief Talk about Big Data Graph Analysis and Visualization. Journal on Big Data, v. 1, n. 1, p. 25-26, 2019.

SYMONS, J.; ALVARADO, R. Can We Trust Big Data? Applying Philosophy of Science to Software. Big Data & Society, v. 3, n. 2, p. 1-17, 2016.

TÖRNBERG, P.; TÖRNBERG, A. The Limits of Computation: A Philosophical Critique of Contemporary Big Data Research. Big Data & Society, v. 5, n. 2, p. 1-12, 2018.

WESTHAVER, G. Continuity and Development: Looking for Typological Treasure with William Jones of Nayland and E. B. Pusey. Bulletin of the John Rylands Library, v. 97, n 1, p. 161-177, 2021.

WIENER, N. Cybernetics, or Communication and Control in the Animal and the Machine. Cambridge, MA: MIT Press, 1948.

WITTGENSTEIN, L. Philosophical Investigations. G.E.M. Anscombe and R. Rhees (ed.), G.E.M. Anscombe (trans.). Oxford: Blackwell, 1953.

Received: 28/04/2023 - Approved: 01/07/2023 - Published: 10/01/2024



Como Citar

Xu, S., & Qian. (2024). Explorando a virada dos dados na filosofia da linguagem na era do big data. TRANS/FORM/AÇÃO: Revista De Filosofia Da Unesp, 47(4), e0240050. Recuperado de https://revistas.marilia.unesp.br/index.php/transformacao/article/view/14517