TEMPO, MODALIDADE E LÓGICA TRIVALENTE EM PEIRCE E LUKASIEWICZ

Autores

  • José Renato Salatiel Professor Adjunto do Departamento de Filosofia da Universidade Federal do Espírito Santos (UFES)

DOI:

https://doi.org/10.36311/1984-8900.2017.v9n20.10.p151

Palavras-chave:

Lógica trivalente, Futuros contingentes, Modalidade, Determinismo, Fatalismo, Continuidade

Resumo

A descoberta de sistemas formais polivalentes foi acompanhada de diferentes motivações filosóficas para o abandono da semântica bivalente e de teoremas da lógica clássica, como o Princípio do Terceiro Excluído. Neste artigo analisamos temas correlatos ao problema dos futuros contingentes, que motivou a criação da lógica trivalente de Lukasiewicz, no contexto da filosofia de C.S. Peirce e da elaboração de suas matrizes trivalentes. Concluímos que as razões de Peirce para a adoção de um sistema formal trivalente, no âmbito da lógica do contínuo, o possibilitam tanto sustentar o indeterminismo aristotélico quanto evitar problemas relativos à abordagem modal de Lukasiewicz.

Downloads

Os dados de download ainda não estão disponíveis.

Referências

ŁUKASIEWICZ, Jan (1918). Farewell lecture by professor Jan Łukasiewicz, delivered in the Warsaw University Lecture Hall on March 7, 1918. In: Selected works.

BORKOWSKI, L. (ed.). Orth-Holland Publishing Company: Amsterdan-London, 1970, pp. 84-86.

_____. (1920). On Three-valued logic. In: Selected works. BORKOWSKI, L. (ed.). Orth-Holland Publishing Company: Amsterdan-London, 1970, pp. 87-88.

_____. (1930). Philosophical remarks on many-valued systems of propositional logic. In: Selected works. BORKOWSKI, L. (ed.). Orth-Holland Publishing Company: Amsterdan-London, 1970, pp. 153-178.

_____. (1961). On determinism. In: Selected works. BORKOWSKI, L. (ed.). OrthHolland Publishing Company: Amsterdan-London, 1970, pp. 110-128.

_____. Selected works. BORKOWSKI, L. (ed.). Orth-Holland Publishing Company: Amsterdan-London, 1970.

PEIRCE, Charles Sanders.Collected papers. 8 vols. HARTSHORNE, Charles; HEISS, Paul e BURKS, Arthur (eds.). Cambridge: Harvard University Press, 1931-1958. [Citado como CP, seguido do volume e do número do parágrafo.]

_____. The Charles S. Peirce Papers (Microfilm Edition). Cambridge: Harvard University Library Photographic Service, 1966. Disponível em: http://andersonfam.me/display/read_work?work_id=149. Acesso em: Out. 2016. [Citado como MS seguido do número da página.]

_____. The essential Peirce, vol. 1 (1867-1893). HOUSER, Nathan and KLOESEL, Christian (eds.). Bloomington and Indianapolis: Indiana University Press, 1992. [Citado como EP 1 seguido do número da página.]

_____. The essential Peirce, vol. 2 (1893-1913). THE PEIRCE EDITION PROJECT (ed.). Bloomington and Indianapolis: Indiana University Press, 1998. [Citado como EP 2 seguido do número da página.]

_____. Philosophy of mathematics: Selected writings. MOORE, Matthew E. (ed.). Bloomington and Indianapolis, IN: Indiana University Press, 2010. [Citado como PM seguido do número da página.]

AGLER, David W. Peirce and the specification of borderline vagueness. Semiotica: Journal of the International Association for Semiotic Studies, 193, p.195–215, 2013.

ANELLIS, Irving. The genesis of the truth-table device. Russell: the Journal of the Russell Archives, n. 24, p. 55–70, Summer 2001. Disponível em; https://escarpmentpress.org/russelljournal/article/viewFile/2056/2081. Acesso em:

Jun. 2017.

_____. Peirce's truth-functional analysis and the origin of the truth table. History and Philosophy of Logic, vol. 33, n. 1, p. 87-97, February 2012. Disponível em: http://www.tandfonline.com/doi/abs/10.1080/01445340.2011.621702?journalCode=thpl20. Acesso em: Jun. 2017.

ARISTÓTELES. Da Interpretação. José Veríssimo Teixeira da Mata (trad. e comentários). São Paulo: Editora Unesp, 2013.

BELL, John L. A Primer of Infinitesimal Analysis. 2ª ed. Cambridge: Cambridge University Press, 2008.

BERGMANN, Merrie. An introduction to many-valued and fuzzy logic: Semantic, algebras and derivation systems. Cambridge: Cambridge University Press, 2008.

BERTRAND, Helm P. Time and reality in American Philosophy. Amherst: University of Massachusetts, 1985.

BOURNE, Craig. Future contingents, non-contradiction and the law of excluded middle. Analysis, vol. 64, n. 2, p. 122-128, April 2004.

BRADY, Geraldine. From Peirce to Skolem: a neglected chapter in the History of Logic. North Holland: Elsevier, 2000.

ENGEL-TIERCELIN, Claudine. Vagueness and the unity of C.S. Peirce's realism. Transactions of the Charles S. Peirce Society, vol. 28, n. 1, p. 51-82, Winter 1992.

FERNANDES, Fernanda L. A. Duas faces do fatalismo lógico: O argumento do dominador de Diodoro Cronos e a batalha naval no De Interpretatione IX. Dissertação de Mestrado. UFRJ: 2009.

FISCH, Max and TURQUETTE, Atwell. Peirce’s triadic logic. Transactions of the Charles S. Peirce Society: A Quartely Journal in American Philosophy, vol. II, n. 2, p. 86-133, Fall 1996.

GASKIN, Richard. The sea battle and the master argument: Aristotle and Diodorus Cronus on the metaphysics of the future. Berlin/ New York: de Gruyter, 1995.

HAACK, Susan. Deviant logic, fuzzy logic: Beyond the formalism. Chicago and London: University of Chicago Press, 1996.

_____. Filosofia das lógicas. Carlos Augusto Mortari e Luiz Henrique de Araújo Dutra (trads.). São Paulo: UNESP, 2002.

HAVENEL, Jérôme. Peirce’s clarifications of continuity. Transactions of the Charles S. Peirce Society: A Quartely Journal in American Philosophy, vol. 44, n. 1, p. 86-133, Winter 2008.

HILPINEN, Risto. On Peirce’s Philosophical Logic: Propositions and their objects.Transactions of the Charles S. Peirce Society: A Quartely Journal in American Philosophy, vol. XXVIII, n. 3, p. 467-488, Summer 1992.

IACONA, Andrea. Future contingents and Aristotle’s fantasy. Crítica: Revista Hispanoamericana de Filosofía. vol. 39, n. 117, p. 45–60, 2007.

LANE, Robert. Peirce’s “Entanglement” with the principles of excluded middle and contradiction. Transactions of the Charles S. Peirce Society: A Quartely Journal in American Philosophy, vol. XXXIII, n. 3, p. 680-703, Summer 1997.

_____. Peirce’s triadic logic revisited. Transactions of the Charles S. Peirce Society: A Quartely Journal in American Philosophy, vol. XXXV, n. 2, p. 284-311, Spring 1999.

_____. Triadic logic. The Digital Encyclopedia of Charles S. Peirce, January 2001. Disponível em: http://www.digitalpeirce.fee.unicamp.br. Acesso em: Outubro 2016.

ŁUKASIEWICZ, Dariusz. On Jan Łukasiewicz’s many-valued logic and his criticism of determinism. In: Philosophia Scientiæ, p. 15-22, 2011. Disponível em: http://philosophiascientiae.revues.org/650. Acesso em: Out. 2016.

MALINOWSKI, Grzegorz. Many-valued logics. Oxford Logic Guides, n. 25. Oxford: Oxford University Press, 1993.

ØHRSTRØM, Peter and HASLE, Per F. V. Temporal logic. From ancient ideas to artificial intelligence. Studies in linguistics and philosophy, vol. 57. Dordrecht, Boston, and London: Kluwer Academic Publishers, 1995.

PIETARINEN, Ahti-Veikko. Signs of logic: Peircean themes on the philosophy of language, games, and communication. Dordrecht: Springer, 2006.

PRIEST, Graham. An Introduction to non-classical logic: From If to Is. 2ª ed. Cambridge: Cambridge University Press, 2008.

PRIOR, Arthur N. Time and modality. Oxford: Oxford University Press, 1957.

_____. Past, present and future. Oxford: Oxford University Press, 1967.

QUINE, Willard Van Orman. Referência e modalidade. In: De um ponto de vista lógico. Antonio Ianni Segatto (trad.). São Paulo: Editora UNESP, 2001, p. 195-221.

ROBERTS, Don. The existential graphs of Charles S. Peirce. The Hague: Mouton & Co, 1973.

SALATIEL, J. Renato. Aspectos da lógica trivalente de C. S. Peirce. Kínesis: Revista de Estudos dos Pós-Graduandos em Filosofia, v.3, p. 31-42, 2011.

SILVEIRA, Lauro Frederico Barbosa da. Continuity and discontinuity in boundary issues. COGNITIO: Revista de Filosofia, vol. 10, n.1, p.139-152, 2009.

THIBAUD, Pierre. Between saying and doing: Peirce’s propositional space. Transactions of the Charles S. Peirce Society: A Quartely Journal in American Philosophy, vol. XXXIII, n. 2, p. 270-327, Summer 1997

TURQUETTE, Atwell R. Peirce's phi and psi operators for triadic logic. Transactions of the Charles S. Peirce Society: A Quartely Journal in American Philosophy, v. 3, p. 66-73, 1967.

_____. Peirce's complete systems of triadic logic. Transactions of the Charles S. Peirce Society: A Quartely Journal in American Philosophy, vol. V, n. 4, p. 199-210, 1969.

Downloads

Publicado

2018-03-15

Edição

Seção

Artigos