Classifying the LOD cloud
Digging into the knowledge graph
DOI:
https://doi.org/10.36311/1981-1640.2018.v12n4.02.p6Keywords:
Linked Open Data, Knowledge Organisation Systems, Big Data, Knowledge GraphAbstract
Massive amounts of data from different contexts and producers are collected and connected relying often solely on statistical techniques. Problems to the acclaimed value of data lie in the precise definition of data and associated contexts as well as the problem that data are not always published in meaningful and open ways. The Linked Data paradigm offers a solution to the limitations of simple keywords by having unique, resolvable and shared identifiers instead of strings This paper reports on a three-year research project “Digging Into the Knowledge Graph,” funded as part of the 2016 Round Four Digging Into Data Challenge (https://diggingintodata.org/awards/2016/project/digging-knowledge-graph). Our project involves comparing terminology employed within the LOD cloud with terminology employed within two general but different KOSs – Universal Decimal Classification and Basic Concepts Classification. We are exploring whether these classifications can encourage greater consistency in LOD terminology and linking the largely distinct scholarly literatures that address LOD and KOSs. Our project is an attempt to connect the Linked Open Data community, which has tended to be centered in computer science, and the KO community, with members from linguistics, metaphysics, library and information science. We focus on the shared challenges related to Big Data between both communities.
Downloads
References
Borgman, Christine L. (2016). Big data, little data, no data: scholar-ship in the networked world. Cambridge, MA: The MITPress, 2016.
Bizer, Christian; Boncz, Peter; Brodie, Michael L.; Erling, Orri. (2011). The Meaningful Use of Big Data: Four Perspectives -Four challenges. // SIGMOD. 40:4 (2011). 56-60.
Gregory, Kathleen; Cousijn, Helena; Groth, Paul; Scharnhorst, An-drea; Wyatt, Sally. (2018). Understanding Data Retrieval Practices: A Social Informatics Perspective. Preprint, Retrieved from http://arxiv.org/abs/1801.04971.
Hey, Tony, Stewart Tansley and Kristin Tolle. (2009). The Fourth Paradigm: Data-Intensive ScientificDiscovery. Redmond: Mi-crosoft research, 2009.
Hitzler, Pascal and Krzysztof Janowicz. (2013). Linked Data, Big Data, and the 4th Paradigm. // Semantic Web. 4:3 (2013)233-235.
Hjørland, Birger. (2015). Theories are Knowledge Organizing Sys-tems(KOS). // Knowledge Organization. 42:2 (2015)113-128.
Hjørland, Birger. (2016). Knowledge Organization (KO). // Knowledge Organization. 43:6 (2016)475-484.
Ibekwe-SanJuan, Fidelia and Bowker, Geoffrey C. (2017). Implications of Big Data for Knowledge Organization. // Knowledge Organization. 44:3 (2017)187-198.Mai, Jens-Erik. (2016). Big data privacy: The datafication of personal information. // The Information Society. 32:3 (2016)192-199.
Martínez-Ávila, Daniel. (2015). Knowledge Organization in the Intersection with Information Technologies. // Knowledge Or-ganization 42:7 (2015)486-498.
Martínez-Ávila, Daniel. (2018). Hacía una base teórica social de la Ciencia de la Información. // Anuario ThinkEPI. 12 (2018)83-89.
Martínez-Ávila, Daniel; SanSegundo, Rosa; Zurian, Francisco A. (2014). Retos y oportunidadesen organización del conocimiento en la intersección con las tecnologías de la información. // Revista Española de Documentación Científica. 37:3 e053 (2014). DOI: http://dx.doi.org/10.3989/redc.2014.3.1112.
Mayer-Scho?nberger, Viktor; Cukier, Kenneth. (2013). Big data: A revolution that will transform how we live, work, and think. New York: Houghton Mifflin Harcourt, 2013.
Mazzocchi, Fulvio. (2015). Could Big Data be the end of theory in science? A few remarks on the epistemology of data-driven sci-ence. //EMBO reports. 16:10 (2015). 1250-1255.
Pauleen, David J.; Rooney, David; Intezari, Ali. (2016). Big data, little wisdom: trouble brewing? Ethical implications for the information systems discipline. // Social Epistemology, DOI: 10.1080/02691728.2016.1249436.
Shiri, Ali. (2014). Linked Data Meets Big Data: A Knowledge Or-ganization Systems Perspective. // Advances in Classification Research Online 24: 16-20. DOI:10.7152/acro.v24i1.14672.
Smiraglia, Richard P. (2012). Knowledge Organization: Some Trendsin an Emergent Domain. // El Profesional de la Infor-mación. 21:3 (2012). 225-227.
Smiraglia, Richard P.; Szostak, Rick. (2018). Converting UDC to BCC: Comparative Approaches to Interdisciplinarity. // Challenges and Opportunities for Knowledge Organization in the Digital Age: Proceedings of the Fifteenth International ISKO Conference, 9-11 July 2018, Porto, Portugal, ed. Fernanda Ribei-ro, Maria Elisa Cerveira. Advances in Knowledge Organization 16.Würzburg: Ergon Verlag, 530-38.
Soergel, Dagobert. (2015).Unleashing the Power of Data through Organization: Structure and Connections for Meaning, Learning and Discovery. // Knowledge Organization 42:6 (2015). 401-427.
Szostak, Rick; Scharnhorst, Andrea; Beek, Wouter; Richard P. Smiraglia, Richard P. (2018). Connecting KOSs and the LOD Cloud. // Challenges and Opportunities for Knowledge Organization in the Digital Age: Proceedings of the Fifteenth International ISKO Conference, 9-11 July 2018, Porto, Portugal, ed. Fernanda Ribei-ro, Maria Elisa Cerveira. Advances in Knowledge Organization 16. Würzburg: Ergon Verlag, 521-29.
Downloads
Published
Issue
Section
License
Copyright (c) 2018 Daniel Martínez Ávila, Richard P. Smiraglia, Rick Szostak, Andrea Scharnhorst, Wouter Beek, Ronald Siebes, Laura Ridenour, Vanessa Schlais
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
When submitting an article, the authors retain the copyright of the article, giving full rights to the Brazilian Journal of Information Science to publish the text.
The author(s) agree that the article, if editorially accepted for publication, shall be licensed under the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) license (http://creativecommons.org/licenses/by-sa/4.0) Readers/users are free to: - Share — copy and redistribute the material in any medium or format - Adapt — remix, transform, and build upon the material for any purpose, even commercially. The licensor cannot revoke these freedoms as long as you follow the license terms. Under the following terms: - Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. - ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original. No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits. Notices: - You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation. - No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.
Creative Commons Attribution-ShareAlike 4.0 International License.