Análise de Termos dos Títulos Publicados nos Anais do XXI ENANCIB por meio do Software NVivo
DOI:
https://doi.org/10.36311/1981-1640.2023.v17.e023003Keywords:
Termos, Frequência, Similaridade, Comunicação CientíficaAbstract
The general objective of the research was to analyze the efficiency in the extraction of terms through the NVIVO software. Among the specific objectives, we sought to identify the most frequent terms contained in the titles of the Working Groups (WGs), as well as to compare them to those extracted from WG7 - Production and Communication of Information in Science, Technology & Innovation. Another objective was to analyze clusters by similarity between the terms contained in the titles. For the treatment of empirical data, the following steps were carried out: a) pre-analysis, selection and preparation of the material; corpora construction; b) exploration of the material – coding techniques; term extraction; and c) treatment of results – statistical operations; interpretation, description and analysis. The most frequent terms in all GTs were “information, “analysis”, “science”, “knowledge” and “management”. The terms of GT7 most frequently were “science”, “analysis”, “information”, “production” and “co-authorship”. The term with the greatest impact in GT7 was “production”, which represented 46.1% of the total attendance. The greatest similarity between the terms occurred with the titles of the GTs: 5 and 8; 2 and 7 and; 3 and 6. Extraction of terms using the NVIVO software is ineffective for in-depth analyses, as the results are presented in unigram format and may be out of context when analyzed individually.
Downloads
References
Albagli, Sarita. "Divulgação científica: informação científica para cidadania". Ciência da informação, v. 25, n. 3, 1996, pp. 396-404, http://revista.ibict.br/ciinf/article/view/639/. Acessado 11 jul. 2022.
Broder, Andrei Z., et al. “Syntactic clustering of the web.” Computer networks and ISDN systems, [S.l.], v. 29, n. 8-13, 1997, pp. 1157-1166. https://www.sciencedirect.com/science/article/abs/pii/S0169755297000317/. Acessado 10 jul. 2022.
Bueno, Wilson da Costa. "Jornalismo científico: revisitando o conceito." Jornalismo científico e desenvolvimento sustentável. São Paulo: All Print 2009, pp. 157-178.
"Corpus". DICIO, Dicionário Online de Português, 7Graus, 2021, www.dicio.com.br/corpus. Acesso em: 11 jul. 2022.
Doni, Marcelo Viana. Análise de cluster: métodos hierárquicos e de particionamento, 2004. Universidade Presbiteriana Mackenzie, Trabalho de Conclusão de Curso, http://meusite.mackenzie.com.br/rogerio/tgi/2004Cluster.PDF/. Acessado 11 jul. 2022.
"ENANCIB". Sobre - XXI ENANCIB – Encontro Nacional de Pesquisa e Pós-graduação em Ciência da Informação, 2021a, http://enancib2021rio.ibict.br/o-evento/sobre/. Acessado 10 jul. 2022.
"ENANCIB". Grupos de Trabalho - XXI ENANCIB – Encontro Nacional de Pesquisa e Pós-graduação em Ciência da Informação, 2021b, https://enancib2021rio.ibict.br/o-evento/grupos-de-trabalho-gts/. Acessado 10 jul. 2022.
"ENANCIB". GT 12 – Informação, Estudos Étnico-Raciais, Gênero e Diversidades, 2022, https://www.ufrgs.br/enancib2022/programacao/gt-12/. Acessado 10 jul. 2022.
Feldman, Ronen, and James Sanger. The text mining handbook: advanced approaches in analyzing unstructured data. Cambridge: Cambridge University Press, 2007.
Garvey, William D., and Belver C. Griffith. “Scientific communication as a social system.” Communication: the essence of science. Oxford: Pergamon, 1979. p.148-164. Appendix B.
Gil, Antonio Carlos. Como elaborar projetos de pesquisa. São Paulo: Atlas, 2010.
Hotho, Andreas, Andreas Nürnberger, and Gerhard Paaß. “A brief survey of text mining.” Ldv Forum, v. 20, n. 1, 2005, pp. 19-62, http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.447.4161&rep=rep1&type=pdf/. Acessado 11 jul. 2022.
Jain, Anil K., M. Narasimha Murty, and Patrick J. Flynn. “Data clustering: a review.” ACM computing surveys (CSUR), v. 31, n. 3, 1999, pp. 264-323, https://dl.acm.org/doi/abs/10.1145/331499.331504/. Acessado 10 jul. 2022.
Marconi, Marina de Andrade, and Eva Maria Lakatos. Fundamentos da metodologia científica. São Paulo: Atlas, 2013.
Michel, Maria Helena. Metodologia e pesquisa científica em ciências sociais: um guia prático para acompanhamento da disciplina e elaboração de trabalhos monográficos. São Paulo: Atlas, 2015.
Salton, Gerard, and Christopher Buckley. “Term-weighting approaches in automatic text retrieval”. Information processing & management, v. 24, n. 5, 1988, pp. 513-523, https://www.sciencedirect.com/science/article/abs/pii/0306457388900210/. Acessado 11 jul. 2022.
Sardinha, Tony Berber. "Lingüística de corpus: histórico e problemática". Delta: documentação de estudos em lingüística teórica e aplicada, v. 16, n. 2, 2000, pp. 323-367, https://www.scielo.br/j/delta/a/vGknQkZQGsGYbrQfKmTZY4s/?format=pdf&lang=pt/. Acessado 10 jul. 2022.
Sardinha, Tony Berber. "Lingüística de Corpus: uma entrevista com Tony Berber Sardinha". Revista Virtual de Estudos da Linguagem–ReVEL, v. 2, n. 3, 2004, pp. 1-5, http://www.revel.inf.br/files/entrevistas/revel_3_entrevista_tony_berber_sardinha.pdf/. Acessado 10 jul. 2022.
Souza, Marcos de. O comportamento de termos da Ciência da Informação por meio da modelagem de tópicos, 2020, Universidade Federal de Minas Gerais, Tese, https://repositorio.ufmg.br/handle/1843/34292/. Acessado 10 jul. 2022.
Tan, Pang-Ning, Michael Steinbach, and Vipin Kumar.”Introduction to Data Mining. ed” Addison-Wesley Longman Publishing Co., Inc., Boston, 2005.
Theodoridis, Sergios, and Konstantinos Koutroumbas. “System evaluation.” Pattern recognition. London: Academic Press, 1998. pp. 342-343.
Valeiro, Palmira Moriconi, and Lena Vania Ribeiro Pinheiro. “Da comunicação científica à divulgação”. Transinformação, v. 20, n. 2, 2008, p. 159-169, https://www.scielo.br/j/tinf/a/jXWgggxgBhXfsT57JDVbghp/abstract/?lang=pt#/. Acessado 10 jul. 2022.
Zaïane, Osmar R., et al. “On data clustering analysis: Scalability, constraints, and validation.” Pacific-Asiad Conference on Knowledge Discovery and Data Mining. Springer, Berlin, Heidelberg, 2002, pp. 28-39, https://link.springer.com/chapter/10.1007/3-540-47887-6_4/. Acessado 11 jul. 2022.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Marcos de Souza
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
When submitting an article, the authors retain the copyright of the article, giving full rights to the Brazilian Journal of Information Science to publish the text.
The author(s) agree that the article, if editorially accepted for publication, shall be licensed under the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) license (http://creativecommons.org/licenses/by-sa/4.0) Readers/users are free to: - Share — copy and redistribute the material in any medium or format - Adapt — remix, transform, and build upon the material for any purpose, even commercially. The licensor cannot revoke these freedoms as long as you follow the license terms. Under the following terms: - Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. - ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original. No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits. Notices: - You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation. - No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.
Creative Commons Attribution-ShareAlike 4.0 International License.