Classifying the LOD cloud
Digging into the knowledge graph
DOI:
https://doi.org/10.36311/1981-1640.2018.v12n4.02.p6Palavras-chave:
Linked Open Data, Knowledge Organisation Systems, Big Data, Knowledge GraphResumo
Massive amounts of data from different contexts and producers are collected and connected relying often solely on statistical techniques. Problems to the acclaimed value of data lie in the precise definition of data and associated contexts as well as the problem that data are not always published in meaningful and open ways. The Linked Data paradigm offers a solution to the limitations of simple keywords by having unique, resolvable and shared identifiers instead of strings This paper reports on a three-year research project “Digging Into the Knowledge Graph,” funded as part of the 2016 Round Four Digging Into Data Challenge (https://diggingintodata.org/awards/2016/project/digging-knowledge-graph). Our project involves comparing terminology employed within the LOD cloud with terminology employed within two general but different KOSs – Universal Decimal Classification and Basic Concepts Classification. We are exploring whether these classifications can encourage greater consistency in LOD terminology and linking the largely distinct scholarly literatures that address LOD and KOSs. Our project is an attempt to connect the Linked Open Data community, which has tended to be centered in computer science, and the KO community, with members from linguistics, metaphysics, library and information science. We focus on the shared challenges related to Big Data between both communities.
Downloads
Referências
Borgman, Christine L. (2016). Big data, little data, no data: scholar-ship in the networked world. Cambridge, MA: The MITPress, 2016.
Bizer, Christian; Boncz, Peter; Brodie, Michael L.; Erling, Orri. (2011). The Meaningful Use of Big Data: Four Perspectives -Four challenges. // SIGMOD. 40:4 (2011). 56-60.
Gregory, Kathleen; Cousijn, Helena; Groth, Paul; Scharnhorst, An-drea; Wyatt, Sally. (2018). Understanding Data Retrieval Practices: A Social Informatics Perspective. Preprint, Retrieved from http://arxiv.org/abs/1801.04971.
Hey, Tony, Stewart Tansley and Kristin Tolle. (2009). The Fourth Paradigm: Data-Intensive ScientificDiscovery. Redmond: Mi-crosoft research, 2009.
Hitzler, Pascal and Krzysztof Janowicz. (2013). Linked Data, Big Data, and the 4th Paradigm. // Semantic Web. 4:3 (2013)233-235.
Hjørland, Birger. (2015). Theories are Knowledge Organizing Sys-tems(KOS). // Knowledge Organization. 42:2 (2015)113-128.
Hjørland, Birger. (2016). Knowledge Organization (KO). // Knowledge Organization. 43:6 (2016)475-484.
Ibekwe-SanJuan, Fidelia and Bowker, Geoffrey C. (2017). Implications of Big Data for Knowledge Organization. // Knowledge Organization. 44:3 (2017)187-198.Mai, Jens-Erik. (2016). Big data privacy: The datafication of personal information. // The Information Society. 32:3 (2016)192-199.
Martínez-Ávila, Daniel. (2015). Knowledge Organization in the Intersection with Information Technologies. // Knowledge Or-ganization 42:7 (2015)486-498.
Martínez-Ávila, Daniel. (2018). Hacía una base teórica social de la Ciencia de la Información. // Anuario ThinkEPI. 12 (2018)83-89.
Martínez-Ávila, Daniel; SanSegundo, Rosa; Zurian, Francisco A. (2014). Retos y oportunidadesen organización del conocimiento en la intersección con las tecnologías de la información. // Revista Española de Documentación Científica. 37:3 e053 (2014). DOI: http://dx.doi.org/10.3989/redc.2014.3.1112.
Mayer-Scho?nberger, Viktor; Cukier, Kenneth. (2013). Big data: A revolution that will transform how we live, work, and think. New York: Houghton Mifflin Harcourt, 2013.
Mazzocchi, Fulvio. (2015). Could Big Data be the end of theory in science? A few remarks on the epistemology of data-driven sci-ence. //EMBO reports. 16:10 (2015). 1250-1255.
Pauleen, David J.; Rooney, David; Intezari, Ali. (2016). Big data, little wisdom: trouble brewing? Ethical implications for the information systems discipline. // Social Epistemology, DOI: 10.1080/02691728.2016.1249436.
Shiri, Ali. (2014). Linked Data Meets Big Data: A Knowledge Or-ganization Systems Perspective. // Advances in Classification Research Online 24: 16-20. DOI:10.7152/acro.v24i1.14672.
Smiraglia, Richard P. (2012). Knowledge Organization: Some Trendsin an Emergent Domain. // El Profesional de la Infor-mación. 21:3 (2012). 225-227.
Smiraglia, Richard P.; Szostak, Rick. (2018). Converting UDC to BCC: Comparative Approaches to Interdisciplinarity. // Challenges and Opportunities for Knowledge Organization in the Digital Age: Proceedings of the Fifteenth International ISKO Conference, 9-11 July 2018, Porto, Portugal, ed. Fernanda Ribei-ro, Maria Elisa Cerveira. Advances in Knowledge Organization 16.Würzburg: Ergon Verlag, 530-38.
Soergel, Dagobert. (2015).Unleashing the Power of Data through Organization: Structure and Connections for Meaning, Learning and Discovery. // Knowledge Organization 42:6 (2015). 401-427.
Szostak, Rick; Scharnhorst, Andrea; Beek, Wouter; Richard P. Smiraglia, Richard P. (2018). Connecting KOSs and the LOD Cloud. // Challenges and Opportunities for Knowledge Organization in the Digital Age: Proceedings of the Fifteenth International ISKO Conference, 9-11 July 2018, Porto, Portugal, ed. Fernanda Ribei-ro, Maria Elisa Cerveira. Advances in Knowledge Organization 16. Würzburg: Ergon Verlag, 521-29.
Downloads
Publicado
Edição
Seção
Licença
Copyright (c) 2018 Daniel Martínez Ávila, Richard P. Smiraglia, Rick Szostak, Andrea Scharnhorst, Wouter Beek, Ronald Siebes, Laura Ridenour, Vanessa Schlais
Este trabalho está licenciado sob uma licença Creative Commons Attribution-ShareAlike 4.0 International License.
Ao submeter um artigo os autores mantêm os direitos autorais do mesmo, cedendo ao Brazilian Journal of Information Science plenos direitos para publicação do referido texto.
O (s) autor (es) concorda(m) que o artigo, se aceito editorialmente para publicação, deve ser licenciado sob a licença Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) (http://creativecommons.org/licenses/by-sa /4.0) Os leitores / usuários são livres para: - Compartilhar - copiar e redistribuir o material em qualquer meio ou formato - Adaptar - remixar, transformar e desenvolver o material para qualquer finalidade, mesmo comercialmente. O licenciante não pode revogar essas liberdades desde que você siga os termos da licença. Sob os seguintes termos: - Atribuição - Você deve dar o crédito apropriado, fornecer um link para a licença e indicar se foram feitas alterações. Você pode fazê-lo de qualquer maneira razoável, mas não de maneira que sugira que o licenciante endossa você ou seu uso. - ShareAlike - Se você remixar, transformar ou desenvolver o material, deverá distribuir suas contribuições sob a mesma licença que o original. Sem restrições adicionais - Você não pode aplicar termos legais ou medidas tecnológicas que restrinjam legalmente outras pessoas a fazer o que a licença permitir. Avisos: - Você não precisa cumprir a licença para elementos do material em domínio público ou nos casos em que seu uso é permitido por uma exceção ou limitação aplicável. - Não há garantias. A licença pode não fornecer todas as permissões necessárias para o uso pretendido. Por exemplo, outros direitos, como publicidade, privacidade ou direitos morais, podem limitar a maneira como você usa o material.
Creative Commons Attribution-ShareAlike 4.0 International License