Psiquismo fetal: bases neurodinâmicas e psicanalíticas

Autores

  • Silvia Gomes Laurentino aNeurologia do Comportamento, MD, PhD
  • Suzanal Fiúza Boxwell bPsiquiatra e psicanalista M.D

DOI:

https://doi.org/10.36311/jhgd.v31.12655

Palavras-chave:

psiquismo fetal, sinaptogênese, neurofísica, psicanálise, neurociência comportamental, desenvolvimento fetal

Resumo

Introdução: As pesquisas neurocientíficas têm proporcionado grandes descobertas no que concerne ao entendimento sobre o funcionamento cerebral e seus circuitos neurais. Com os avanços nos estudos sobre o comportamento fetal, novas discussões têm surgido acerca da existência de um possível aparelho psíquico rudimentar. Questionar a existência de um psiquismo no feto torna-se duplamente desafiador. Primeiro pela controvérsia que existe no âmbito da neurociência sobre os estudos dos epifenômenos. Segundo, pela própria dificuldade que a psicanálise tem em aceitar a existência de uma estrutura psíquica antes do nascimento. Este estudo foi realizado considerando todas estas controvérsias e limitações científicas, e por este motivo deve ser entendido como uma hipótese teórica e um convite para uma ampla e transdisciplinar visão sobre a complexidade do comportamento humano. A partir de uma extensa revisão sobre o desenvolvimento do sistema nervoso e da sinaptogênese fetal, e associando as pesquisas neurofisiológicas e da neurofísica, foi possível criar uma articulação com a teoria Freudiana da energia psíquica descrita no Projeto para uma psicologia científica. A partir destas articulações, levantou-se questionamentos sobre o desenvolvimento fetal, especialmente na fase pré-termo, o qual seria composto por atividades sinápticas intensas, especialmente nas regiões somatossensoriais e talamocorticais que receberiam estímulos exógenos e endógenos, ambos atuando para gerar um acúmulo de energia psíquica. Desta forma, criou-se uma hipótese de que este intenso fluxo de energia seria o primeiro sinal do desenvolvimento do aparelho psíquico primitivo no feto. Assim, foi possível supor que durante o período pré-termo esta descarga de energia catexizada poderia se projetar diretamente sobre as estruturas cerebrais límbicas e motoras e deixar traços de memória inconscientes das experiências da vida intrauterina. Seriam estas influências de natureza psíquica em conjunto com os fatores epigenéticos, que contribuiriam para o aparecimento de certos transtornos comportamentais e do neurodesenvolvimento. Sendo assim, sugerir uma abordagem transdisciplinar precoce em bebês de risco expostos a fatores estressores ambientais ou epigenéticos durante o período gestacional, especialmente durante a janela de plasticidade sináptica, proporcionará uma oportunidade terapêutica através da reorganização psíquica e da integração sensoriomotora.

Referências

Gesell A, Amatruda CS. The embryology of behavior : the beginnings of the human mind. New York ; London: Harper; 1945. xix, 289 p.

Kisilevsky BS, Hains SM, Brown CA, Lee CT, Cowperthwaite B, Stutzman SS, et al. Fetal sensitivity to properties of maternal speech and language. Infant Behav Dev. 2009; 32(1): 59-71.

Rascovsky A. Beyond the oral stage. Int J Psychoanal. 1956; 37(4-5): 286-9.

Leader LR. Studies in fetal behaviour. Br J Obstet Gynaecol. 1995; 102(8): 595-7.

Kisilevsky BS, Hains SM, Lee K, Xie X, Huang H, Ye HH, et al. Effects of experience on fetal voice recognition. Psychol Sci. 2003; 14(3): 220-4.

Freud S, Strachey J, Freud A, Rothgeb CL. The standard edition of the complete psychological works of Sigmund Freud. London: Hogarth Press : Institute of Psycho-analysis; 1953.

Freud S, Strachey J. An outline of psycho-analysis. New York,: W. W. Norton; 1970. xi, 75 p. p.

Freud S, Strachey J. An outline of psychoanalysis. [1st ed. New York,: W. W. Norton; 1949. 127 p. p.

Kostovic I, Rados M, Kostovic-Srzentic M, Krsnik Z. Fundamentals of the Development of Connectivity in the Human Fetal Brain in Late Gestation: From 24 Weeks Gestational Age to Term. J Neuropathol Exp Neurol. 2021; 80(5): 393-414.

Kostovic I, Isasegi IZ, Krsnik Z. Sublaminar organization of the human subplate: developmental changes in the distribution of neurons, glia, growing axons and extracellular matrix. J Anat. 2019; 235(3): 481-506.

Carroll L, Braeutigam S, Dawes JM, Krsnik Z, Kostovic I, Coutinho E, et al. Autism Spectrum Disorders: Multiple Routes to, and Multiple Consequences of, Abnormal Synaptic Function and Connectivity. Neuroscientist. 2021; 27(1): 10-29.

Kostovic I, Sedmak G, Judas M. Neural histology and neurogenesis of the human fetal and infant brain. Neuroimage. 2019; 188: 743-73.

Kostovic I, Rakic P. Developmental history of the transient subplate zone in the visual and somatosensory cortex of the macaque monkey and human brain. J Comp Neurol. 1990; 297(3): 441-70.

Kostovic I, Lukinovic N, Judas M, Bogdanovic N, Mrzljak L, Zecevic N, et al. Structural basis of the developmental plasticity in the human cerebral cortex: the role of the transient subplate zone. Metab Brain Dis. 1989;4(1):17-23.

Kostovic I, Kostovic-Srzentic M, Benjak V, Jovanov-Milosevic N, Rados M. Developmental dynamics of radial vulnerability in the cerebral compartments in preterm infants and neonates. Front Neurol. 2014; 5:139.

Kostovic I, Seress L, Mrzljak L, Judas M. Early onset of synapse formation in the human hippocampus: a correlation with Nissl-Golgi architectonics in 15- and 16.5-week-old fetuses. Neuroscience. 1989; 30(1): 105-16.

Kostovic I, Sedmak G, Vuksic M, Judas M. The relevance of human fetal subplate zone for developmental neuropathology of neuronal migration disorders and cortical dysplasia. CNS Neurosci Ther. 2015; 21(2): 74-82.

Hayama T, Kasai H. [A new role of GABA on synapses]. Brain Nerve. 2014; 66(8): 987-93.

Herlenius E, Lagercrantz H. Development of neurotransmitter systems during critical periods. Exp Neurol. 2004; 190 Suppl 1: S8-21.

Hadders-Algra M. Early human brain development: Starring the subplate. Neurosci Biobehav Rev. 2018; 92: 276-90.

Ito S. GABA and glycine in the developing brain. J Physiol Sci. 2016; 66(5): 375-9.

Hubel DH, Wiesel TN. Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol. 1962; 160: 106-54.

Hubel DH, Wiesel TN. Shape and arrangement of columns in cat’s striate cortex. J Physiol. 1963; 165: 559-68.

Hubel DH, Wiesel TN. Effects of Monocular Deprivation in Kittens. Naunyn Schmiedebergs Arch Exp Pathol Pharmakol. 1964; 248:492-7.

Hubel DH. Integrative processes in central visual pathways of the cat. J Opt Soc Am. 1963; 53: 58-66.

Hubel DH, Wiesel TN. Integrative action in the cat’s lateral geniculate body. J Physiol. 1961; 155: 385-98.

Kostovic I, Jovanov-Milosevic N. The development of cerebral connections during the first 20-45 weeks’ gestation. Semin Fetal Neonatal Med. 2006; 11(6): 415-22.

Kostovic I, Jovanov-Milosevic N. Subplate zone of the human brain: historical perspective and new concepts. Coll Antropol. 2008; 32 Suppl 1: 3-8.

Kostovic I, Jovanov-Milosevic N, Rados M, Sedmak G, Benjak V, Kostovic-Srzentic M, et al. Perinatal and early postnatal reorganization of the subplate and related cellular compartments in the human cerebral wall as revealed by histological and MRI approaches. Brain Struct Funct. 2014; 219(1): 231-53.

Moore AR, Filipovic R, Mo Z, Rasband MN, Zecevic N, Antic SD. Electrical excitability of early neurons in the human cerebral cortex during the second trimester of gestation. Cereb Cortex. 2009; 19(8): 1795-805.

Moore AR, Zhou WL, Jakovcevski I, Zecevic N, Antic SD. Spontaneous electrical activity in the human fetal cortex in vitro. J Neurosci. 2011; 31(7): 2391-8.

Allendoerfer KL, Shatz CJ. The subplate, a transient neocortical structure: its role in the development of connections between thalamus and cortex. Annu Rev Neurosci. 1994; 17: 185-218.

Friauf E, Shatz CJ. Changing patterns of synaptic input to subplate and cortical plate during development of visual cortex. J Neurophysiol. 1991; 66(6): 2059-71.

Fitzgerald M. The development of nociceptive circuits. Nat Rev Neurosci. 2005; 6(7): 507-20.

Kostovic I, Judas M. The development of the subplate and thalamocortical connections in the human foetal brain. Acta Paediatr. 2010; 99(8): 1119-27.

Uzunova G, Pallanti S, Hollander E. Excitatory/inhibitory imbalance in autism spectrum disorders: Implications for interventions and therapeutics. World J Biol Psychiatry. 2016; 17(3): 174-86.

Andoh M, Koyama R. Microglia regulate synaptic development and plasticity. Dev Neurobiol. 2021.

Andoh M, Ikegaya Y, Koyama R. Microglia modulate the structure and function of the hippocampus after early-life seizures. J Pharmacol Sci. 2020; 144(4): 212-7.

Parkhurst CN, Yang G, Ninan I, Savas JN, Yates JR, 3rd, Lafaille JJ, et al. Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell. 2013; 155(7): 1596-609.

Rubenstein JL, Merzenich MM. Model of autism: increased ratio of excitation/inhibition in key neural systems. Genes Brain Behav. 2003; 2(5): 255-67.

Andoh M, Ikegaya Y, Koyama R. Microglia in animal models of autism spectrum disorders. Prog Mol Biol Transl Sci. 2020; 173: 239-73.

Andoh M, Koyama R. Assessing Microglial Dynamics by Live Imaging. Front Immunol. 2021; 12: 617564.

Patel S, Dale RC, Rose D, Heath B, Nordahl CW, Rogers S, et al. Maternal immune conditions are increased in males with autism spectrum disorders and are associated with behavioural and emotional but not cognitive co-morbidity. Transl Psychiatry. 2020; 10(1): 286.

Schafer DP, Lehrman EK, Kautzman AG, Koyama R, Mardinly AR, Yamasaki R, et al. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron. 2012; 74(4): 691-705.

Cunningham CL, Martinez-Cerdeno V, Noctor SC. Microglia regulate the number of neural precursor cells in the developing cerebral cortex. J Neurosci. 2013; 33(10): 4216-33.

Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S, et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science. 2010; 330(6005): 841-5.

Epelman S, Lavine KJ, Randolph GJ. Origin and functions of tissue macrophages. Immunity. 2014; 41(1) :21-35.

Dreyfus-Brisac C, Monod N. Sleep of Premature and Full-Term Neonates--a Polygraphic Study. Proc R Soc Med. 1965 ;58: 6-7.

Monod N, Pajot N. [The sleep of the full-term newborn and premature infant. I. Analysis of the polygraphic study (rapid eye movements, respiration and E.E.G.) in the full-term newborn]. Biol Neonat. 1965; 8(5): 281-307.

Dreyfus-Brisac C. Ontogenesis of sleep in human prematures after 32 weeks of conceptional age. Dev Psychobiol. 1970; 3(2): 91-121.

Dreyfus-Brisac C. Neurophysiological studies in human premature and full-term newborns. Biol Psychiatry. 1975; 10(5): 485-96.

Dreyfus-Brisac C. The electroencephalogram of the premature infant. World Neurol. 1962; 3:5-15.

Blanc C, Dreyfus-Brisac C. Electro-encephalogram and brain maturation. Encephale. 1956; 45(3): 205-41.

Dreyfus-Brisac C, Samsondollfus D, Fischgold H. [Cerebral electrical activity in premature and newborn infants]. Sem Hop. 1955; 31(31/3): 1783-90.

Freud S, Ragg-Kirkby H, Bowie M, Freud S. An outline of psychoanalysis. London ; New York: Penguin Books; 2003. xxviii, 235 p. p.

Eccles J. The Synapse. Sci Am. 1965; 212: 56-66.

Beck F, Eccles JC. Quantum aspects of brain activity and the role of consciousness. Proc Natl Acad Sci U S A. 1992; 89(23): 11357-61.

Eccles JC. Developing concepts of the synapses. J Neurosci. 1990; 10(12): 3769-81.

Eccles JC. The human psyche. Berlin: Springer International; 1980. xv, 279 p. p.

Eccles JC. The synapse: from electrical to chemical transmission. Annu Rev Neurosci. 1982; 5: 325-39.

Eccles JC. How the self acts on the brain. Psychoneuroendocrinology. 1982; 7(4): 271-83.

Eccles JC. Animal consciousness and human self-consciousness. Experientia. 1982; 38(12): 1384-91.

Eccles JC. Evolution of the brain : creation of the self. pbk ed ed. London: Routledge; 1989. xv, 282 p p.

Eccles JC. Evolution of consciousness. Proc Natl Acad Sci U S A. 1992; 89(16): 7320-4.

Eccles JC. The human psyche. London: Routledge; 1992. xv, 279 p. p.

Eccles JC. Brain, speech and consciousness. Naturwissenschaften. 1973; 60(4): 167-76.

Schwartz JM, Stapp HP, Beauregard M. Quantum physics in neuroscience and psychology: a neurophysical model of mind-brain interaction. Philos Trans R Soc Lond B Biol Sci. 2005; 360(1458): 1309-27.

Vanhatalo S, Palva JM, Andersson S, Rivera C, Voipio J, Kaila K. Slow endogenous activity transients and developmental expression of K+-Cl- cotransporter 2 in the immature human cortex. Eur J Neurosci. 2005; 22(11): 2799-804.

Hobson JA. Sleep: physiologic aspects. N Engl J Med. 1969; 281(24): 1343-5.

Pace-Schott EF, Hobson JA. The neurobiology of sleep: genetics, cellular physiology and subcortical networks. Nat Rev Neurosci. 2002; 3(8): 591-605.

Dreyfus Brisac C, Lezine I, Berges J. [the Development of the Premature Infant after 2 Years. Psychological, Neurologic and Electroencephalographic Interrelations]. Rev Neuropsychiatr Infant. 1964; 12: 283-334.

Jouvet M. [Phylogeny of sleep stages]. Acta Psychiatr Belg. 1994; 94(4-6): 256-67.

Hobson JA, McCarley RW. The brain as a dream state generator: an activation-synthesis hypothesis of the dream process. Am J Psychiatry. 1977; 134(12): 1335-48.

Revonsuo A. The reinterpretation of dreams: an evolutionary hypothesis of the function of dreaming. Behav Brain Sci. 2000; 23(6): 877-901; discussion 4-1121.

Hall CS, & Van de Castle, R. L. . The content analysis of dreams. Appleton-CenturyCrofts NY, editor. New York1966.

Meaidi A, Jennum P, Ptito M, Kupers R. The sensory construction of dreams and nightmare frequency in congenitally blind and late blind individuals. Sleep Med. 2014; 15(5): 586-95.

Ianniruberto A, Tajani E. Ultrasonographic study of fetal movements. Semin Perinatol. 1981; 5(2): 175-81.

Publicado

2022-01-31

Edição

Seção

ORIGINAL ARTICLES