Motor learning through a non-immersive virtual task in people with limb-girdle muscular dystrophies

Autores

  • Marcelo Prumes Laboratório de Delineamento de Estudos e Escrita Científica. Centro Universitário Saúde ABC (FMABC), Santo André, SP, Brazil
  • Talita Dias da Silva Departamento de Cardiologia, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil. / Faculdade de Medicina, Universidade Cidade de São Paulo (UNICID), São Paulo, SP, Brazil. / Programa de Pós-Graduação em Ciências da Reabilitação, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil.
  • Camila Aparecida de Oliveira Alberissi Escola de Artes, Ciências e Humanidades (EACH), Universidade de São Paulo (USP), São Paulo, SP, Brazil
  • Camila Miliani Capellini Programa de Pós-Graduação em Ciências da Reabilitação, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil.
  • Lilian Del Ciello de Menezes Departamento de Cardiologia, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil.
  • João Batista Francalino da Rocha Laboratório de Delineamento de Estudos e Escrita Científica. Centro Universitário Saúde ABC (FMABC), Santo André, SP, Brazil.
  • Francis Meire Favero Setor de Investigação nas Doenças Neuromusculares, Departamento de Neurologia e Neurocirurgia, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil.
  • Carlos Bandeira de Mello Monteiro Laboratório de Delineamento de Estudos e Escrita Científica. Centro Universitário Saúde ABC (FMABC), Santo André, SP, Brazil. /Programa de Pós-Graduação em Ciências da Reabilitação, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil. /Escola de Artes, Ciências e Humanidades (EACH), Universidade de São Paulo (USP), São Paulo, SP, Brazil.

DOI:

https://doi.org/10.7322/jhgd.v30.11115

Palavras-chave:

Muscular Dystrophies, Virtual Reality, Motor Learning, Limb-Girdle Muscular Dystrophies

Resumo

Introduction: Limb-girdle muscular dystrophies (LGMDs) are neuromuscular and genetic disorders that progress with weakness and damage of the proximal muscles, developing with loss of functionality. Virtual reality environments are suggested as an effective alternative for performance of daily life activities. However, there is no evidence in the literature on the use of virtual reality in this population.

Objective: Assess motor performance through a motor learning protocol in a coincident timing task.

Methods: 10 participants with LGMD and 10 healthy individuals were selected and included in the study to perform a non-immersive virtual reality task divided into three phases: acquisition (20 attempts), retention (5 attempts), and transfer (5 attempts, with speed increase).

Results: It is observed that the accuracy of movement improves from the beginning to the end of the acquisition (p = 0.01); however, there is a marginal difference between the groups in block A1 (p = 0.089). Regarding the variability of touches, observed by the variable error, both groups improved performance in all phases.

Conclusion: Even with lower performance than the control group at the beginning of the practice, individuals with LGMD showed the potential to optimize motor function during the practice of a non-immersive virtual reality activity and were able to match their performance with the control group after a few attempts.

Downloads

Os dados de download ainda não estão disponíveis.

Referências

Mercuri E, Muntoni F. Muscular dystrophies. Lancet. 2013;381(9869):845-60. DOI: http://doi.org/10.1016/S0140-6736(12)61897-2

Leung DG, Wagner KR. Therapeutic advances in muscular dystrophy. Ann Neurol. 2013;74(3):404-11. DOI: http://doi.org/10.1002/ana.23989

Mah JK, Korngut L, Fiest KM, Dykeman J, Day LJ, Pringsheim T, et al. A Systematic Review and Metaanalysis on the Epidemiology of the Muscular Dystrophies. Can J Neurol Sci. 2016;43(1):163-77. DOI: http://doi.org/10.1017/cjn.2015.311

Reed UC. Doenças neuromusculares. J. Pediatr. 2002;78(1):S89-103. DOI: http://doi.org/10.2223/jped.853

Lue YJ, Lin RF, Chen SS, Lu YM. Measurement of the functional status of patients with different types of muscular dystrophy. Kaohsiung J Med Sci. 2009;25(6):325-33. DOI: http://doi.org/10.1016/S1607-551X(09)70523-6

Jansen M, Jong M, Coes HM, Eggermont F, van Alfen N, Groot IJM. The assisted 6-minute cycling test to assess endurance in children with a neuromuscular disorder. Muscle Nerve. 2012;46(4):520-30. DOI: http://doi.org/10.1002/mus.23369

Jung IY, Chae JH, Park SK, Kim JH, Kim JY, Kim SJ, et al. The correlation analysis of functional factors and age with duchenne muscular dystrophy. Ann Rehabil Med. 2012;36(1):22-32. DOI: http://doi.org/10.5535/arm.2012.36.1.22

Verhaart IE, Aartsma-Rus A. Gene therapy for Duchenne muscular dystrophy. Curr Opin Neurol. 2012;25(5):588-96. DOI: http://doi.org/10.1097/WCO.0b013e328357b0be

Bayram E, Topcu Y, Karakaya P, Bayram MT, Sahin E, Gunduz N, et al. Correlation between motor performance scales, body composition, and anthropometry in patients with Duchenne muscular dystrophy. Acta Neurol Belg. 2013;113(2):133-7. DOI: http://doi.org/10.1007/s13760-012-0125-y

Dubowitz V. Muscle Disorders in Childhood. 2 ed. London: Saunders Company, 1995.

Durbeej M, Campbell KP. Muscular dystrophies involving the dystrophin-glycoprotein complex: an overview of current mouse models. Curr Opin Genet Dev. 2002;12(3):349-61. DOI: http://doi.org/10.1016/s0959-437x(02)00309-x

Oliveira AS, Gabbai AA, Moura LS. Miopatias: atualização no diagnóstico e tratamento. Rev Diagn Tratamento. 2002;7(1):21-5.

Emery AE. The muscular dystrophies. Lancet. 2002;359(9307):687-95. DOI: http://doi.org/10.1016/S0140-6736(02)07815-7

Pedrolo DS, Lima PM. Análise comparativa da qualidade de vida em indivíduos portadores da distrofia muscular de Duchenne (DMD) e distrofia muscular de Cinturas (DMC). J Health Sci Inst. 2012;30(2):176-80.

Thompson R, Straub V. Limb-girdle muscular dystrophies - international collaborations for translational research. Nat Rev Neurol. 2016;12(5):294-309. DOI: http://doi.org/10.1038/nrneurol.2016.35

Angelini C, Giaretta L, Marozzo R. An update on diagnostic options and considerations in limb-girdle dystrophies. Expert Rev Neurother. 2018;18(9):693-703. DOI: http://doi.org/10.1080/14737175.2018.1508997

Fanin M, Nascimbeni AC, Angelini C. Gender difference in limb-girdle muscular dystrophy: a muscle fiber morphometric study in 101 patients. Clin Neuropathol. 2014;33(3):179-85. DOI: http://doi.org/10.5414/NP300728

Angelini C. Neuromuscular disease. Diagnosis and discovery in limb-girdle muscular dystrophy. Nat Rev Neurol. 2016;12(1):6-8. DOI: http://doi.org/10.1038/nrneurol.2015.230

Cup EH, Sturkenboom IH, Pieterse AJ, Hendricks HT. van Engelen BG, Oostendorp RA, et al. The evidence for occupational therapy for adults with neuromuscular diseases: a systematic review. OTJR Occup Particip Health. 2008;(28):12-18. DOI: http://doi.org/10.3928/15394492-20080101-02

Knuijt S, Cup EH, Pieterse AJ, Swart BJ, van der Wilt GJ, van Engelen BG, et al. Speech pathology interventions in patients with neuromuscular diseases: a systematic review. Folia Phoniatr Logop. 2011;63(1):15-20. DOI: http://doi.org/10.1159/000319731

Chen CH, Tang SC, Su YN, Yang CC, Jeng JS. Cardioembolic stroke related to limb-girdle muscular dystrophy 1B. BMC Res Notes. 2013;6:32. DOI: http://doi.org/10.1186/1756-0500-6-32

Hollingsworth KG, Willis TA, Bates MG, Dixon BJ, Lochmüller H, Bushby K, et al. Subepicardial dysfunction leads to global left ventricular systolic impairment in patients with limb girdle muscular dystrophy 2I. Eur J Heart Fail. 2013;15(9):986-94. DOI: http://doi.org/10.1093/eurjhf/hft057

Okere A, Reddy SS, Gupta S, Shinnar M. A cardiomyopathy in a patient with limb girdle muscular dystrophy type 2A. Circ Heart Fail. 2013;6(1):e12-13. DOI: https://doi.org/10.1161/CIRCHEARTFAILURE.112.971424

Mitsuhashi S, Kang PB. Update on the genetics of limb girdle muscular dystrophy. Semin Pediatr Neurol. 2012;19(4):211-18. DOI: http://doi.org/10.1016/j.spen.2012.09.008

Nilsson MI, Laureano ML, Saeed M, Tarnopolsky MA. Dysferlin aggregation in limb-girdle muscular dystrophy type 2B/myoshi myopathy necessitates mutational screen for diagnosis. Muscle Nerve. 2012;47(5):740-7. DOI: http://doi.org/10.1002/mus.23666

Melià MJ, Kubota A, Ortolano S, Vílchez JJ, Gámez J, Tanji K, et al. Limb-girdle muscular dystrophy 1F is caused by a microdeletion in the transportin 3 gene. Brain. 2013;136(5):1508-17. DOI: http://doi.org/10.1093/brain/awt074

Fanin M, Nascimbeni AC, Angelini C. Muscle atrophy in Limb Girdle Muscular Dystrophy 2A: a morphometric and molecular study. Neuropathol Appl Neurobiol. 2013;39(7):762-71. DOI: http://doi.org/10.1111/nan.12034

Sveen ML, Andersen SP, Ingelsrud LH, Blichter S, Olsen NE, Jønck S, et al. Resistance training in patients with limb-girdle and becker muscular dystrophies. Muscle Nerve. 2013;47(2):163-9. DOI: http://doi.org/10.1002/mus.23491

Dam L, Kooi AJ, Wattingen M, Haan RJ, Visser M. Reliability and accuracy of skeletal muscle imaging in limb-girdle muscular dystrophies. Neurology. 2012;79(16):1716-23. DOI: http://doi.org/10.1212/WNL.0b013e31826e9b73

Freitas BL, Silva TD, Crocetta TB, Massetti T, Araújo LV, Coe S, et al. Analysis of Different Device Interactions in a Virtual Reality Task in Individuals With Duchenne Muscular Dystrophy A Randomized Controlled Trial. Front Neurol. 2019;10:24. DOI: http://doi.org/10.3389/fneur.2019.00024

Heutinck L, Jansen M, Elzen Y, van der PijlD, Groot IJ. Virtual Reality Computer Gaming with Dynamic Arm Support in Boys with Duchenne Muscular Dystrophy. J Neuromuscul Dis. 2018;5(3):359-72. DOI: http://doi.org/10.3233/JND-180307

Massetti T, Fávero FM, Menezes LC, Alvarez MP, Crocetta TB, Guarnieri R, et al. Achievement of Virtual and Real Objects Using a Short-Term Motor Learning Protocol in People with Duchenne Muscular Dystrophy: A Crossover Randomized Controlled Trial. Games Health J. 2018;7(2):107-15. DOI: http://doi.org/10.1089/g4h.2016.0088

Quadrado VH, Silva TD, Favero FM, Tonks J, Massetti T, Monteiro CB. Motor learning from virtual reality to natural environments in individuals with Duchenne muscular dystrophy. Disabil Rehabil Assist Technol. 2019;14(1):12-20. DOI: http://doi.org/10.1080/17483107.2017.1389998

Alvarez MP, Silva TD, Favero FM, Valenti VE, Raimundo RD, Vanderlei LC, et al. Autonomic Modulation in Duchenne Muscular Dystrophy during a Computer Task: A Prospective Control Trial. PLoS One. 2017;12(1):e0169633. DOI: http://doi.org/10.1371/journal.pone.0169633

Miliani CC, Silva TD, Tonks J, Watson S, Alvarez MP, Menezes LD, et al. Improvements in motor tasks through the use of smartphone technology for individuals with Duchenne muscular dystrophy. Neuropsychiatr Dis Treat. 2017;13:2209-17. DOI: http://doi.org/10.2147/NDT.S125466

Silva TD, Ribeiro-Papa DC, Coe S, Malheiros SRP, Massetti T, Meira Junior CM, et al. Evaluation of speed-accuracy trade-off in a computer task to identify motor difficulties in individuals with Duchenne Muscular Dystrophy - A cross-sectional study. Research in developmental disabilities. 2020;96:103541-10. DOI: http://doi.org/10.1016/j.ridd.2019.103541

Monteiro CB, Massetti T, Silva TD, van der Kamp J, Abreu LC, Leone C, et al. Transfer of motor learning from virtual to natural environments in individuals with cerebral palsy. Res Dev Disabil. 2014;35(10):2430-7. DOI: http://doi.org/10.1016/j.ridd.2014.06.006

Fernani DCGL, Prado MTA, Silva TD, Massetti T, Abreu LC, Magalhães FH, et al. Evaluation of speedaccuracy trade-off in a computer task in individuals with cerebral palsy: a cross-sectional study. BMC Neurol. 2017;17(1):143. DOI: http://doi.org/10.1186/s12883-017-0920-4

Prado MTA, Fernani DCGL, Silva TD, Smorenburg ARP, Abreu LC, Monteiro CBM. Motor learning paradigm and contextual interference in manual computer tasks in individuals with cerebral palsy. Res Dev Disabil. 2017;64:56-63. DOI: http://doi.org/10.1016/j.ridd.2017.03.006

Paula JN, Monteiro CBM, Silva TD, Miliani CC, Menezes LD, Massetti T, et al. Motor performance of individuals with cerebral palsy in a virtual game using a mobile phone. Disabil Rehabil Assist Technol. 2018;13(6):609-13. DOI: http://doi.org/10.1080/17483107.2017.1392620

Martins FP, Massetti T, Crocetta TB, Lopes PB, Silva AA, Figueiredo EF, et al. Analysis of motor performance in individuals with cerebral palsy using a non-immersive virtual reality task - a pilot study. Neuropsychiatr Dis Treat. 2019;15:417-28. DOI: http://doi.org/10.2147/NDT.S184510

Menezes, LC, Gomes, KS, Massetti, T, Silva TD, Possebom WF, Miliani CC, et al. Motor learning in mobile (cell phone) device in Down syndrome patients - pilot project. Med Express. 2015;2(4):1. DOI: http://dx.doi.org/10.5935/MedicalExpress.2015.04.05

Monteiro CBM, Silva TD, Abreu LC, Fregni F, Araujo LV, Ferreira FHIB, et al. Short-term motor learning through non-immersive virtual reality task in individuals with down syndrome. BMC Neurol. 2017;17(1):71. DOI: http://doi.org/10.1186/s12883-017-0852-z

Moraes IAP, Massetti T, Crocetta TB, Silva TD, Menezes LDC, Monteiro CBM, et al. Motor learning characterization in people with autism spectrum disorder: A systematic review. Dement Neuropsychol. 2017;11(3):276-86. DOI: https://doi.org/10.1590/1980-57642016dn11-030010

Antão JYFL, Abreu LC, Barbosa RTA, Crocetta TB, Guarnieri R, Massetti T, et al. Use of Augmented Reality with a Motion-Controlled Game Utilizing Alphabet Letters and Numbers to Improve Performance and Reaction Time Skills for People with Autism Spectrum Disorder. Cyberpsychol Behav Soc Netw. 2020;23(1):16-22. DOI: https://doi.org/10.1089/cyber.2019.0103

Moraes IAP, Monteiro CBM, Silva TD, Massetti T, Crocetta TB, Menezes LDC, et al. Motor learning and transfer between real and virtual environments in young people with autism spectrum disorder: A prospective randomized cross over controlled trial. Autism Res. 2020;13(2):307-19. DOI: https://doi.org/10.1002/aur.2208

Publicado

2020-10-15

Edição

Seção

ORIGINAL ARTICLES