Similitud Semántica
Un análisis de dominio
DOI:
https://doi.org/10.36311/1981-1640.2024.v18.e024024Palabras clave:
Análise de Domínio, Similaridade Semântica, Processamento de Linguagem Natural, Organização do ConhecimentoResumen
En el campo en rápida evolución del procesamiento del lenguaje natural (PLN), comprender el dominio de la similitud semántica es de suma importancia tanto para aplicaciones académicas como industriales. Este artículo presenta un análisis integral del dominio de la similitud semántica, integrando un enfoque multidisciplinario que abarca conceptos clave, interrelaciones entre estas facetas, partes interesadas, prácticas de información y sistemas de clasificación existentes. Aclaramos las ideas centrales, como la similitud léxica y sintáctica, las incrustaciones y varias métricas de similitud, y demostramos cómo se interrelacionan. El documento también identifica y caracteriza la diversa gama de partes interesadas involucradas en este dominio, desde investigadores académicos y líderes tecnológicos hasta formuladores de políticas y comunidades de código abierto. Además, exploramos cómo se difunde y utiliza la información dentro de este dominio, incluido un examen de las tendencias de publicaciones de investigaciones e informes de la industria. Por último, el artículo evalúa los sistemas de clasificación y ontologías existentes que estructuran el conocimiento en este campo. Nuestros hallazgos pretenden servir como marco fundamental para futuras investigaciones, desarrollo y consideraciones éticas en el dominio de la similitud semántica. Este análisis en profundidad aspira a guiar tanto a los recién llegados como a los expertos experimentados a través del intrincado panorama de la similitud semántica, contribuyendo así al avance holístico del campo.
Descargas
Referencias
An, Hongda, et al. "Hybrid Self-Interactive Attentive Siamese Network for Medical Textual Semantic Similarity." Proceedings of the 2020 4th International Conference on Management Engineering, Software Engineering and Service Sciences, p. 52-56, 2020 DOI: https://doi.org/10.1145/3380625.3380647.
Almuhaimeed, Abdullah, et al. "A modern semantic similarity method using multiple resources for enhancing influenza detection." Expert Systems with Applications, v. 193, p. 116466, 2022.
Babaeianjelodar, Marzieh. Towards Fair and Transparent Decision Making and Machine Learning Systems. Diss. Clarkson University, 2021.
Blei, David M., Andrew Y. Ng, and Michael I. Jordan. "Latent Dirichlet Allocation." Journal of machine Learning Research, v. 3, p. 993-1022, 2003.
Bräscher, Marisa. “Semantic Relations in Knowledge Organization Systems.” Knowledge Organization, v. 41, n. 2, p. 175–80, 2014.
Cao, Son, et al. "Hybrid Approach for Text Similarity Detection in Vietnamese Based on Sentence-BERT and WordNet. "ITCC '22: Proceedings of the 4th International Conference on Information Technology and Computer Communications, pp. 59-63, 2022. DOI: https://doi.org/10.1145/3548636.3548645,
Chandrasekaran, Dhivya, and Vijay Mago. "Evolution of semantic similarity—a survey." ACM Computing Surveys (CSUR). v. 54, n. 2, p.1-37, 2021.
Chen, Qiang, et al. "Fine-grained semantic textual similarity measurement via a feature separation network." Applied Intelligence, v. 53, p. 18205-18218, 2023. DOI: https://doi.org/10.1007/s10489-022-04448-6.
Farouk, Mamdouh. "Measuring sentences similarity: a survey." Indian Journal of Science and Technology, v. 12, n. 25, 2019. DOI: https://doi.org/10.17485/ijst/2019/v12i25/143977.
Hjørland, Birger. "What is Knowledge Organization (KO)?" Knowledge Organization, v. 35, n. 2, p. 86 101, 2008. DOI: https://doi.org/10.5771/0943-7444-2008-2-3-86.
Jha, Akshita, et al. "Supervised Contrastive Learning for Interpretable Long-Form Document Matching." ACM Transactions on Knowledge Discovery from Data, v.17. n. 2, p. 27, 2023. DOI: https://doi.org/10.1145/3542822.
Joty, Shafiq, et al. "Discourse analysis and its applications." I: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: tutorial abstracts.", Florence, Italy, 2019, p. 12-17. DOI: https://doi.org/10.18653/v1/P19-4003.
Jurafsky, Dan, and James H. Martin. Speech and Language Processing (3rd ed. draft). 2021, https://web.stanford.edu/~jurafsky/slp3/. Accessed 17 June 2024.
Konstan, Joseph A., and John Riedl. "Recommender systems: from algorithms to user experience." User modeling and user-adapted interaction, v. 22, p. 101-123, 2012.
Lv, Chao, et al. "Siamese Multiplicative LSTM for Semantic Text Similarity." In: ACAI'20: Proceedings of the 2020 3rd International Conference on Algorithms, Computing and Artificial Intelligence, p. 28, 2021, DOI: https://doi.org/10.1145/3446132.3446160.
Malkiel, Itzik, et al. "Interpreting BERT-Based Text Similarity via Activation and Saliency Maps." In: WWW'22: Proceedings of the ACM Web Conference 2022, p. 3259-3268, 2022. DOI: https://doi.org/10.1145/3485447.3512045.
Mehndiratta, Akanksha, and Krishna Asawa. "Spectral Learning of Semantic Units in a Sentence Pair to Evaluate Semantic Textual Similarity." In: Bellatreche, L., Goyal, V., Fujita, H., Mondal, A., Reddy, P.K. (eds) Big Data Analytics: 8th International Conference, BDA 2020. Sonepat, India, 2020. DOI: https://doi.org/10.1007/978-3-030-66665-1_4.
Peng, Deguang, et al. "Learning Long-Text Semantic Similarity with Multi-Granularity Semantic Embedding Based on Knowledge Enhancement." In: Proceedings of the 2020 1st International Conference on Control, Robotics and Intelligent System, 2021, p. 19-25, DOI: https://doi.org/10.1145/3437802.3437806.
Sonawane, Sheetal S., and Parag Kulkarni. "Concept based document similarity using graph model." International Journal of Information Technology, v. 14, n.1, p. 311-322, 2022. DOI: https://doi.org/10.1007/s41870-019-00314-w.
Teller, Virginia. "Book Reviews: Speech and language processing: an introduction to natural language processing, computational linguistics, and speech recognition.". Computational Linguistics, v, 26, n. 4, p 638–641, 2000. https://direct.mit.edu/coli/article/26/4/629/1682/On-Coreferring-Coreference-in-MUC-and-Related.
Torkanfar, Navid, and Ehsan Rezazadeh Azar. "Quantitative similarity assessment of construction projects using WBS-based metrics." Advanced Engineering Informatics, v. 46, p. 101179, 2020. DOI: https://doi.org/10.1016/j.aei.2020.101179
Yang, Jiaqi, et al. "Measuring the short text similarity based on semantic and syntactic information." Future Generation Computer Systems, v. 114, p. 169-180, 2021.
Wang, Jiangyao, et al. "Text similarity calculation method based on hybrid model of LDA and TF-IDF." In: Proceedings of the 2019 3rd International Conference on Computer Science and Artificial Intelligence. 2019. DOI: https://doi.org/10.1145/3374587.3374590.
Wang, Jing, et al. "Systematic evaluation of research progress on natural language processing in medicine over the past 20 years: bibliometric study on PubMed." Journal of Medical Internet Research, v. 22, n. 1, p. e16816, 2020.
Wang, Keyang, et al. "Comparison between Calculation Methods for Semantic Text Similarity Based on Siamese Networks." In: 4th International Conference on Data Science and Information Technology, 2021, p. 389-395. DOI: https://doi.org/10.1145/3478905.3478981.
Wang, Zhongguo, and Bao Zhang. "Chinese Text Similarity Calculation Model Based on Multi-Attention Siamese Bi-LSTM." In: Proceedings of the 4th International Conference on Computer Science and Software Engineering, 2021, p. 93-98. DOI: https://doi.org/10.1145/3494885.3494902.
Xiao, Qi, et al. "An unsupervised semantic text similarity measurement model in resource-limited scenes." Information Sciences, v. 616, p. 444-460, 2022.
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2024 Rita Carolina Costa, Thiago Bragatto, Renato Fileto
Esta obra está bajo una licencia internacional Creative Commons Atribución-CompartirIgual 4.0.
Al someter un artículo, los autores conservan los derechos de autor del artículo, otorgando todos los derechos para el Brazilian Journal of Information Science: research trends para publicar el texto.
El(los) autor(es) acuerdan que el artículo, si se acepta editorialmente para su publicación, tendrá licencia bajo Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) (http://creativecommons.org/licenses/by-sa /4.0).
Los lectores/usuarios son libres para:
- Compartir - copiar y redistribuir el material en cualquier medio o formato.
- Adaptar - remezclar, transformar y construir sobre el material para cualquier propósito, incluso comercialmente.
El licenciante no puede revocar estas libertades mientras siga los términos de la licencia. Bajo los siguientes términos:
- Atribución: debe otorgar el crédito apropiado, proporcionar un enlace a la licencia e indicar si se realizaron cambios. Puede hacerlo de manera razonable, pero de ninguna manera que sugiera que el licenciante lo respalda en su uso.
Compartir igual: si remezcla, transforma o desarrolla el material, debe distribuir sus contribuciones bajo la misma licencia que el original.
Sin restricciones adicionales: no puede aplicar términos legales o medidas tecnológicas que restrinjan legalmente a otros de hacer cualquier cosa que la licencia permita.
Avisos:
- No tiene que cumplir con la licencia para elementos del material de dominio público o cuando su uso esté permitido por una excepción o limitación aplicable.
- No se otorgan garantías. Es posible que la licencia no le otorgue todos los permisos necesarios para su uso previsto. Por ejemplo, otros derechos como publicidad, privacidad o derechos morales pueden limitar la forma en que usa el material.
Creative Commons Attribution-ShareAlike 4.0 International License