The influence of sports practice and its prediction indicators on the performance of aerobic, motor, attention, cognitive flexibility and processing speed
DOI:
https://doi.org/10.7322/jhgd.v29.9534Keywords:
Sport, motor coordination, cognitive flexibility, speed of cognitive processingAbstract
Introduction: Sports initiation is usually started during childhood and adolescence, and the beneficial effects of this practice for physical and motor capacities are already known. Recent research has shown the potential of sports to stimulate and modify cognitive development.
Objective: To verify the relationship of sports practice during childhood on cardiorespiratory, motor, attention, cognitive flexibility and cognitive processing speed.
Methods: 130 students aged 7 to 10 years participated in the study, of which 68 were athletes and 62 non-athletes, divided into sports group and control group. The researchers carried out three visits for the application of the research instruments, which were carried out in a randomized manner within the school premises, divided into three blocks: 1) attention test for cancellation and test of tracks A and B (applied collectively); 2) jumping tests; 3) anamnesis, body composition and the Körperkoordination für Kinder (KTK) test.
Results: Children practicing sports obtained lower values ??in the weight (28 ± 10.08 kg vs 33.9 ± 15.3 kg), waist circumference (57.8 ± 7.7 cm vs 61.7 ± 9.6 cm) and circumference of the hip (69.1 ± 9.5 cm vs 72.8 ± 10.5 cm). In addition, we observed higher values ??in single-hops scores (96.9 ± 17.3 vs 85.6 ± 14.3) and lateral jumps scores (99.1 ± 18.8 vs 91.2 ± 18.0) compared to children who do not play sports. (p < 0.05). The high performance in single-heel jumps, side jumps, motor quotient, B-trails and B-A trails presented as predictors of sports practice (CI > 0.50).
Conclusion: The results indicated a positive relationship between children practicing sports in childhood and interesting benefits in the ability of cognitive flexibility, without expressing differences in motor coordination compared to non-practicing children.
Downloads
References
2. Hoeboer J, Vries S, Krijger-Hombergen M, Wormhoudt R, Drent A, Krabben K, et al. Validity of an Athletic Skills Track among 6- to 12-year-old children. J Sports Sci. 2016;34(21):2095-105. DOI: http://doi.org/10.1080/02640414.2016.1151920
3. Laukkanen A, Pesola A, Havu M, Sääkslahti A, Finni T. Relationship between habitual physical activity and gross motor skills is multifaceted in 5- to 8-year-old children. Scand J Med Sci Sports. 2014;24(2):e102-10. DOI: http://doi.org/10.1111/sms.12116
4. Hillman CH, Pontifex MB, Castelli DM, Khan NA, Raine LB, Scudder MR, et al. Effects of the FITKids randomized controlled trial on executive control and brain function. Pediatrics. 2014;134(4):e1063-71. DOI: http://doi.org/10.1542/peds.2013-3219
5. Diamond A. Close interrelation of motor development and cognitive development and of the cerebellum and prefrontal cortex. Child Dev. 2000;71(1):44-56. DOI: http://doi.org/10.1111/1467-8624.00117
6. Casey BJ, Somerville LH, Gotlib IH, Ayduk O, Franklin NT, Askren MK, et al. Behavioral and neural correlates of delay of gratification 40 years later. Proc Natl Acad Sci U S A. 2011;108(36):14998-5003. DOI: http://doi.org/10.1073/pnas.1108561108
7. Mischel W, Shoda Y, Rodriguez MI. Delay of gratification in children. Sci. 1989;244(4907):933-8. DOI: http://doi.org/10.1126/science.2658056
8. Khan NA, Hillman CH. The relation of childhood physical activity and aerobic fitness to brain function and cognition: a review. Pediatr Exerc Sci. 2014;26(2):138-46. DOI: http://doi.org/10.1123/pes.2013-0125
9. Geertsen SS, Thomas R, Larsen MN, Dahn IM, Andersen JN, Krause-Jensen M, et al. Motor skills and exercise capacity are associated with objective measures of cognitive functions and academic performance in preadolescent children. PLoS One. 2016;11(8):e0161960. DOI: http://doi.org/10.1371/journal.pone.0161960
10. Ahler T, Bendiksen M, Krustrup P, Wedderkopp N. Aerobic fitness testing in 6- to 9-year-old children: Reliability and validity of a modified Yo-Yo IR1 test and the Andersen test. Eur J Appl Physiol. 2012;112(3):871-6. DOI: http://doi.org/10.1007/s00421-011-2039-4
11. Chaddock L, Neider MB, Lutz A, Hillman CH, Kramer AF. Role of childhood aerobic fitness in successful street crossing. Med Sci Sports Exerc. 2012;44(4):749-53. DOI: http://doi.org/10.1249/MSS.0b013e31823a90cb
12. Erickson KI, Hillman CH, Kramer AF. Physical activity, brain, and cognition. Curr Opin Behav Sci. 2015;4:27-32. DOI: https://doi.org/10.1016/j.cobeha.2015.01.005
13. Budde H, Voelcker-Rehage C, Pietraßyk-Kendziorra S, Ribeiro P, Tidow G. Acute coordinative exercise improves attentional performance in adolescents. Neurosci Lett. 2008;441(2):219-23. DOI: https://doi.org/10.1016/j.neulet.2008.06.024
14. Niederer I, Susi K, Gut J, Hartman T, Schindler C, Barral J, et al. Relationship of aerobic fitness and motor skills with memory and attention in preschoolers (Ballabeina): A cross-sectional and longitudinal study. BMC Pediatr. 2011;11:34. DOI: https://doi.org/10.1186/1471-2431-11-34
15. Ishihara T, Sugasawa S, Matsuda Y, Mizuno M. Improved executive functions in 6–12-year-old children following cognitively engaging tennis lessons. J Sports Sci. 2017;35(20):2014-20. DOI: https://doi.org/10.1080/02640414.2016.1250939
16. Fernandes VR, Ribeiro MLS, Melo T, Maciel-Pinheiro PT, Guimarães TT, Araújo NB, et al. Motor coordination correlates with academic achievement and cognitive function in children. Front Psychol. 2016;7:318. DOI: https://doi.org/10.3389/fpsyg.2016.00318
17. van der Niet AG, Smith J, Oosterlaan J, Scherder EJA, Hartman E, Visscher C. Effects of a Cognitively Demanding Aerobic Intervention during Recess on Children’s Physical Fitness and Executive Functioning. Pediatr Exerc Sci. 2016;28(1):64-70. DOI: https://doi.org/10.1123/pes.2015-0084
18. Martin A, Booth JN, Laird Y, Sproule J, Reilly JJ, Saunders DH. Physical activity, diet and other behavioural interventions for improving cognition and school achievement in children and adolescents with obesity or overweight. Cochrane Database Syst Rev. 2018; 1:CD009728. DOI: https://doi.org/10.1002/14651858.CD009728.pub3
19. Zangirolami-Raimundo1 J, Echeimberg J de O, Leone C. Research methodology topics?: Cross- sectional studies. J Hum Growth Dev. 2018;28(3):356-60. DOI: http://dx.doi.org/10.7322/jhgd.152198
20. Seabra AG, Dias NM. Avaliação neuropsicológica cognitiva: atenção e funções executivas. Vol. 1. Memnon, 2017; p.50-89.
21. Montiel JM, Capovilla AGS. Teste de atenção por cancelamento: análise de critérios de correção. Cognição. 2008;14(54):289-96.
22. Slaughter AMH, Lohman TG, Boileau RA, Horswill CA, Stillman RJ, Van Loan MD, et al. Skinfold equations for estimation of body fatness in children and youth. Hum Biol. 2013;60(5):709-23.
23. Petroski EL, Pires Neto CS. Validação de Equações antropométricas para estimativa da densidade corporal em mulheres. Rev Bras Ativ Fís Saúde. 1995;1(2):65-73. DOI: https://doi.org/10.12820/rbafs.v.1n2p65-73
24. Ribeiro AS, David AC, Barbacena MM, Rodrigues ML, França NM. Teste de Coordenação Corporal para Crianças (KTK): aplicações e estudos normativos. Motricidade. 2012;8(3):40-51. DOI: http://dx.doi.org/10.6063/motricidade.8(3).1155
25. Huijgen BCH, Leemhuis S, Kok NM, Verburgh L, Oosterlaan J, Elferink-Gemser MT, et al. Cognitive functions in elite and sub-elite youth soccer players aged 13 to 17 years. PLoS One. 2015;10(12):e0144580. DOI: http://dx.doi.org/10.1371/journal.pone.0144580
26. Verburgh L, Scherder EJA, Van Lange PAM, Oosterlaan J. Executive functioning in highly talented soccer players. PLoS One. 2014;9(3):e91254. DOI: https://doi.org/10.1371/journal.pone.0091254
27. Wang CH, Chang CC, Liang YM, Shih CM, Chiu WS, Tseng P, et al. Open vs. closed skill sports and the modulation of inhibitory control. PLoS One. 2013;8(2):e55773. DOI: https://doi.org/10.1371/journal.pone.0055773
28. Baumeister J, Reinecke K, Liesen H, Weiss M. Cortical activity of skilled performance in a complex sports related motor task. Eur J Appl Physiol. 2008;104(4):625-31. DOI: https://doi.org/10.1007/s00421-008-0811-x
29. Kamijo K, Khan NA, Pontifex MB, Scudder MR, Drollette ES, Raine LB, et al. The Relation of adiposoty to cognitive control and scholastic achievement in preadolescent children. Obesity. 2013;20(12):2406-11. DOI: https://doi.org/10.1038/oby.2012.112
30. Kamijo K, Takeda Y, Takai Y, Haramura M. The relationship between childhood aerobic fitness and brain functional connectivity. Neurosci Lett. 2016;632:119-23. DOI: https://doi.org/10.1016/j.neulet.2016.08.051
31. O’Halloran CJ, Kinsella GJ, Storey E. The cerebellum and neuropsychological functioning?: A critical review. J Clin Exp Neuropsychol. 2011;34(1):35-56. DOI: https://doi.org/10.1080/13803395.2011.614599
32. Haapala EA, Lintu N, Väistö J, Robinson LE, Viitasalo A, Lindi V, et al. Associations of Physical Performance and Adiposity with Cognition in Children. Med Sci Sports Exerc. 2015;47(10):2166-74. DOI: https://doi.org/10.1249/MSS.0000000000000652