Roux-en-y gastric bypass reduces body parameters but does not alter diet quality during six months follow-up

Authors

  • Gabriela Bernabé Braga a Postgraduate Program in Nutrition and Health (PPGNS), Health Sciences Center, Federal University of Espírito Santo, Vitória-ES, Brazil;
  • Amanda Motta de Bortoli a Postgraduate Program in Nutrition and Health (PPGNS), Health Sciences Center, Federal University of Espírito Santo, Vitória-ES, Brazil;
  • Beatriz Bobbio de Brito b Department of Integrated Health Education, Health Sciences Center, Federal University of Espírito Santo, Vitória-ES, Brazil.
  • Luciane Bresciani Salaroli a Postgraduate Program in Nutrition and Health (PPGNS), Health Sciences Center, Federal University of Espírito Santo, Vitória-ES, Brazil; b Department of Integrated Health Education, Health Sciences Center, Federal University of Espírito Santo, Vitória-ES, Brazil.
  • Andressa Bolsoni Lopes a Postgraduate Program in Nutrition and Health (PPGNS), Health Sciences Center, Federal University of Espírito Santo, Vitória-ES, Brazil;
  • Fabiano Kenji Haraguchi a Postgraduate Program in Nutrition and Health (PPGNS), Health Sciences Center, Federal University of Espírito Santo, Vitória-ES, Brazil; b Department of Integrated Health Education, Health Sciences Center, Federal University of Espírito Santo, Vitória-ES, Brazil. https://orcid.org/0000-0002-1019-8888

DOI:

https://doi.org/10.36311/jhgd.v33.14730

Keywords:

Obesity, bariatric surgery, gastric bypass, surgery, body composition, diet, healthy

Abstract

Backgroung: the diet quality contributes for the success of weight loss treatment after bariatric surgery.

Objective: to evaluate weight loss, body parameters and diet quality during the short-term (6 months) follow-up of subjects undergoing Roux-en-Y Gastric Bypass (RYGB).

Methods: prospective and observational study, carried out with adult patients, of both sexes, submitted to RYGB. Weight, BMI, percentage of total weight loss (%TWL), waist circumference (WC), fat mass (FM), fat-free mass (FFM) and diet quality were evaluated before (T0), and approximately in the second (T1) and sixth month (T2) after RYGB. Diet quality was assessed by the Healthy Eating Index. Data were analyzed by repeated measures ANOVA or Friedman’s test, with 5% significance level.

Results: the final sample consisted of 18 patients, (89% female). %TWL was 16.2% at T1 and 26.7% at T2. There was a significant reduction in weight, BMI, WC, FM, FFM (p<0.001), in total daily calorie intake (p=0.017), and in total fat consumption (p=0.009) over the course of the evaluated moments. The diet was classified as low quality, mainly due to the low intake of cereals, roots, tubers, fruits, vegetables, legumes, meat, eggs, milk and derivatives, not differing between the evaluated moments (p>0.05).

Conclusion: in the present study, despite adequate weight loss and reduction of body parameters, subjects submitted to RYGB showed a low diet quality during the follow-up, indicating the maintenance of inadequate eating habits.

Downloads

Download data is not yet available.

References

Ruban A, Stoenchev K, Ashrafian H, Teare J. Current treatments for obesity. Clin Med (Lond). 2019; 19: 205-212. DOI: 10.7861/clinmedicine.19-3-205.

Buchwald H. The evolution of metabolic/bariatric surgery. Obes Surg. 2014; 24(8): 1126-1135. DOI: http://doi:10.1007/s11695-014-1354-3

Gamba FP, Siqueira BS, Tsuchiya RS, Tanaka TM, Grassiolli S. Impact of Roux-en-Y Gastric Bypass and Vertical Gastrectomy on weight loss: a retrospective and longitudinal study in the State of Paraná, Brazil. Rev Col Bras Cir. 2023; 50:e20233431. English, Portuguese. DOI: 10.1590/0100-6991e-20233431-en.

American College of Cardiology/American Heart Association Task Force on Practice Guidelines, Obesity Expert Panel, 2013. Expert Panel Report: Guidelines (2013) for the management of overweight and obesity in adults. Obesity. 2014; 22: S41-410. DOI: 10.1002/oby.20660

Rijswijk AS, Olst N, Schats W, Peet DL, Laar AW. What Is Weight Loss After Bariatric Surgery Expressed in Percentage Total Weight Loss (%TWL)? A Systematic Review. Obes Surg. 2021; 31(8): 3833-3847. DOI: http://doi: 10.1007/s11695-021-05394-x

Grover BT, Morell MC, Kothari SN, Borgert AJ, Kallies KJ, Baker MT. Defining Weight Loss After Bariatric Surgery: a Call for Standardization. Obes Surg. 2019; 29(11): 3493-3499. DOI: http://doi: 10.1007/s11695-019-04022-z

Cornejo-Pareja I, Molina-Vega M, Gómez-Pérez AM, Damas-Fuentes M, Tinahones FJ. Factors Related to Weight Loss Maintenance in the Medium-Long Term after Bariatric Surgery: A Review. J Clin Med. 2021; 16; 10(8): 1739. DOI: http://doi: 10.3390/jcm10081739

Bettini S, Belligoli A, Fabris R, Busetto L. Diet approach before and after bariatric surgery. Rev Endocr Metab Disord. 2020; 21(3): 297-306. DOI: http://doi:10.1007/s11154-020-09571-8

Yue TP, Mohd Yusof BN, Nor Hanipah ZB, Gee T. Food tolerance, nutritional status and health-related quality of life of patients with morbid obesity after bariatric surgery. Clin Nutr ESPEN. 2022; 48: 321-328. DOI: http://doi: 10.1016/j.clnesp.2022.01.026

Miller GD, Norris A, Fernandez A. Changes in nutrients and food groups intake following laparoscopic Roux-en-Y gastric bypass (RYGB). Obes Surg. 2014;24(11):1926-32. http://doi: 10.1007/s11695-014-1259-1

Kanerva N, Larsson I, Peltonen M, Lindroos AK, Carlsson LM. Changes in total energy intake and macronutrient composition after bariatric surgery predict long-term weight outcome: findings from the Swedish Obese Subjects (SOS) study. Am J Clin Nutr. 2017; 106(1): 136-145. DOI: http://doi: 10.3945/ajcn.116.149112

Ziadlou M, Hosseini-Esfahani F, Mozaffari Khosravi H, Hosseinpanah F, Barzin M, Khalaj A, Valizadeh M. Dietary macro- and micro-nutrients intake adequacy at 6th and 12th month post-bariatric surgery. BMC Surg. 2020; 20(1): 232. DOI: http://doi: 10.1186/s12893-020-00880-y

Gesquiere I, Foulon V, Augustijns P, Gils A, Lannoo M, Van der Schueren B, Matthys C. Micronutrient intake, from diet and supplements, and association with status markers in pre- and post-RYGB patients. Clin Nutr. 2017; 36(4): 1175-1181. DOI: http://doi: 10.1016/j.clnu.2016.08.009

Shim JS, Oh K, Kim HC. Dietary assessment methods in epidemiologic studies. Epidemiol Health. 2014; 22(3): 140-163. DOI: http://doi: 10.4178/epih/e2014009

Bowman AS, Lino M, Gerrior AS, Basiotis PP. The healthy eating index: 1994-96. Washington (DC): US Department of Agriculture, 1998.

Kyle UG, Bosaeus I, Lorenzo AD, Deurenberg P, Elia M, Manuel Gomez J, et al. Bioelectrical impedance analysis part II: Utilization in clinical practice. Clin Nutr. 2004; 23: 1430-1453

World Health Organization (WHO). Physical Status: The Use and Interpretation of Anthropometry. Report of a WHO Expert Committee. Geneva. 1995:439.

Segal KR, Gutin B, Presta E, Wang J, Itallie TB. Estimation of human body composition by electrical impedance methods: a comparative study. J Appl Physiol. 1985; 58(5): 1565-71. DOI: http://doi: 10.1152/jappl.1985.58.5.1565

Gibson, SG. Principles of nutrition assessment. Oxford: Oxford University Press; 1990.

Kennedy ET, Ohls J, Carlson S, Fleming K. The Healthy Eating Index: design and applications. J Am Diet Assoc. 1995; 95(10): 1103-1108. DOI: http://doi:10.1016/S0002-8223(95)00300-2

Melendez-Araújo MS, Arruda SL, Oliveira E, Carvalho KM. Preoperative nutritional interventions in morbid obesity: impact on body weight, energy intake, and eating quality. Obes Surg. 2012; 22(12): 1848-1854. DOI: http://doi:10.1007/s11695-012-0737-6

Vidal J, Corcelles R, Jiménez A, Flores L, Lacy AM. Metabolic and Bariatric Surgery for Obesity. Gastroenterology. 2017; 152(7): 1780-1790. DOI: http://doi:10.1053/j.gastro.2017.01.051

Kvehaugen AS, Farup PG. Changes in gastrointestinal symptoms and food tolerance 6 months following weight loss surgery: associations with dietary changes, weight loss and the surgical procedure. BMC Obes. 2018; 5: 29. DOI: http://doi: 10.1186/s40608-018-0206-4

Sherf Dagan S, Goldenshluger A, Globus I, Schweiger C, Kessler Y, Kowen Sandbank G, Ben-Porat T, Sinai T. Nutritional Recommendations for Adult Bariatric Surgery Patients: Clinical Practice. Adv Nutr. 2017;15; 8(2): 382-394. DOI: http://doi: 10.3945/an.116.014258

Meany G, Conceição E, Mitchell JE. Binge eating, binge eating disorder and loss of control eating: effects on weight outcomes after bariatric surgery. Eur Eat Disord Rev. 2014; 22(2): 87-91. DOI: http://doi: 10.1002/erv.2273

Nikiforova I, Barnea R, Azulai S, Susmallian S.Analysis of the Association between Eating Behaviors and Weight Loss after Laparoscopic Sleeve Gastrectomy. Obes Facts. 2019; 12: 618-631. DOI: http://doi:10.1159/000502846

Guillet C, Masgrau A, Mishellany-Dutour A, Blot A, Caille A, Lyon N, et al. Bariatric surgery affects obesity-related protein requirements. Clin Nutr ESPEN. 2020;40:392-400. doi:10.1016/j.clnesp.2020.06.007

Steenackers N, Gesquiere I, Matthys C. The relevance of dietary protein after bariatric surgery: what do we know? Curr Opin Clin Nutr Metab Care. 2018; 21(1): 58-63. DOI: http://doi: 10.1097/MCO.0000000000000437

Al-Shamari SD, ElSherif MA, Hamid W, Hanna F. The effect of protein supplementation on body muscle mass and fat mass in post-bariatric surgery: a randomized controlled trial (RCT) study protocol. Arch Public Health. 2018; 22; 76:7. DOI: http://doi: 10.1186/s13690-017-0252-2

Bertoni L, Valentini R, Zattarin A, Belligoli A, Bettini S, Vettor R, Foletto M, Spinella P, Busetto L. Assessment of Protein Intake in the First Three Months after Sleeve Gastrectomy in Patients with Severe Obesity. Nutrients. 2021; 27; 13(3): 771. DOI: http://doi: 10.3390/nu13030771

Nuijten MAH, Eijsvogels TMH, Monpellier VM, Janssen IMC, Hazebroek EJ, Hopman MTE. The magnitude and progress of lean body mass, fat-free mass, and skeletal muscle mass loss following bariatric surgery: A systematic review and meta-analysis. Obes Rev. 2022; 23(1): e13370. DOI: 10.1111/obr.13370

Mechanick JI, Apovian C, Brethauer S, Garvey WT, Joffe AM, Kim J, et al. Clinical Practice Guidelines for the Perioperative Nutrition, Metabolic, and Nonsurgical Support of Patients Undergoing Bariatric Procedures. Endocr Pract. 2019; 25(12): 1346-1359. DOI: http://doi: 10.4158/GL-2019-0406

Chiappetta S, Schaack HM, Wölnerhannsen B, Stier C, Squillante S, Weiner RA. The Impact of Obesity and Metabolic Surgery on Chronic Inflammation. Obes Surg. 2018; 28(10): 3028-3040. DOI: 10.1007/s11695-018-3320-y

Ramírez EM, Espinosa O, Berrones R, Sepúlveda EM, Guilbert L, Solís M, et al. The Impact of Preoperative BMI (Obesity Class I, II, and III) on the 12-Month Evolution of Patients Undergoing Laparoscopic Gastric Bypass. Obes Surg. 2018; 28(10): 3095-3101. DOI: http://doi: 10.1007/s11695-018-3281-1

Corcelles R, Boules M, Froylich D, Hag A, Daigle CR, Aminian A, Brethauer SA, Burguera B, Schauer PR. Total Weight Loss as the Outcome Measure of Choice After Roux-en-Y Gastric Bypass. Obes Surg. 2016 Aug; 26(8): 1794-8. DOI: 10.1007/s11695-015-2022-y.

Downloads

Published

2023-08-14

Issue

Section

ORIGINAL ARTICLES