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ABSTRACT: In this paper the author emphasizes the value of problems and 

problem solving in the teaching of logic. Afterwards, special attention is given to 

Natural Deduction. Also, this paper poses some reflections relative to the 

presentation of the notions of univocal connective and conservative extension in a 

teaching situation. Some brief remarks on Analytic Tableaux and logical 

terminology may also prove useful pedagogically.  
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1. INTRODUCTION 

 

 The author’s goal in this paper is to share some of his experiences in the teaching of 

logic. It is hopefully written for teachers of logic interested in enriching their courses. 

Anyway, readers are warned that some of the possibilities referred to may only be 

implemented in the case of special audiences, e.g. students already conversant in 

mathematics. Readers are also warned that the author does not have much space here to 

give precise details of its contents. In section 2 problems are considered an interesting way 

to begin a logic course. It is easier for the students to grasp the concepts that logic 

introduces after they have themselves solved a problem that they usually find motivating 

and in whose solution the concepts that logic introduces are almost instinctively applied. In 

section 4 the author considers very briefly the matter of translation. Sections 5 and 6 are 

dedicated respectively to Natural Deduction and Analytic Tableaux. Some terminological 

points are taken up in section 7. In particular, the author does not consider the question of 

particular contents of different logic courses according to ages or especial interests of the 

students. This question is dealt with e.g. in [14]. Also the author will not say anything 

regarding computer-assisted logic teaching (for this the reader may see e.g. [8]).  

 

 

2. PROBLEMS 

 

 To start with the author has found useful stating problems for the students to solve. 

Logic is about deduction, so the best way to begin seems to be to help students focus on 

deduction. To this end, instead of talking about deduction or trying to define it, it seems 

better to state a problem for the students to solve. The students should not feel frustrated if 

they do not solve it, but it is important that they consider it in earnest.  
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 Problems should neither be trivial nor too difficult. Also, they should not have an 

easily seen mechanical solution. In some cases, they may be dealt with observing or 

manipulating concrete objects, such as coins or pieces of paper, something which can easily 

be done in a classroom. This provides for a connection with the real world. 

 The author uses the strategy of leaving the students alone with the chosen problem 

for (say) five minutes. Even if the students do not solve the problem almost whatever they 

do will be useful for their understanding of logic, because this is a situation where they can 

compare their own thinking with the theoretical material that logic introduces. This 

procedure can be repeated the first minutes of every class taking appropriately chosen 

problems whose solutions are relevant for the contents of the class. 

Example of appropriate problems may be found in several books by several authors, 

e.g. Gardner in [5] and [6] and Smullyan in [13]. An example may be the very well known 

problem of finding out the color of the hat of a blind person belonging to a group of three 

persons, the other two with normal sight though no one can see his own hat, where every 

one has a hat taken from a set of five hats, two (say) red and three (say) white and all are 

consecutively asked about the color of their own hat. One of the persons with normal sight 

is asked first and he says he cannot deduce his own hat color after observing the hat of the 

others. The second person with normal sight is asked afterwards and he also says he cannot 

deduce his own hat color after seeing the hat of the blind and remembering what the 

previous person with normal sight has answered. Finally the blind deduces his own hat 

color having paid attention to the previous answers. 

 Solving problems has been emphasized also as the appropriate way of learning 

mathematics by authors such as Polya (see [9], [10] and [11]). And note that both problem 

solving and Polya are also mentioned in [14], but, strangely enough, only in the context of a 

strategy for ages between 10-13. 

 

 

3. THE CONNECTION BETWEEN LOGIC AND THE SOLVING OF PROBLEMS 

 

After having solved certain problem or after having done any work towards the 

solution of a problem, it will be possible to call the students attention to the fact that they 

have been using expressions such as “therefore”, “and”, “or”, “if, then”, “not”, etc. Here it 

seems important to make clear that what really matter are the concepts behind those words 

and not the words themselves. Logic takes its way with formal languages, but that should 

not be confused with the fact that the concepts or meaning of words are what really matter. 

It is also the opportunity to distinguish concepts of words such as “therefore” which will be 

dealt in the logical theory as a relation and concepts of words such as “and” which will be 

dealt as an operation.     

 

 

4. TRANSLATING FROM A NATURAL LANGUAGE 

 

Learning logic can partially be seen as learning a language. Teachers of a second 

language usually say that translating is not a good way of learning a new language. 

Nonetheless, teachers usually have a good experience in the teaching of logic making 

students translate between natural and logical language. But the students should be 

cautioned: literal translations do not work in many cases. So, the only available procedure 
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in the case of translating into logical language seems to be to grasp the logical meaning of 

statements taking into consideration, for example, that propositional language is very poor 

in comparison with the natural languages. 

Let us now consider a situation that is something more that just doing a translation 

and that seems to be very useful in the teaching of logic. The situation involves some 

manipulation of logical concepts, something more than a mere translation. Let us consider 

an example to illustrate this question. There are traditional problems in an island whose 

natives are either knights or knaves (see e.g. [13]). The knights always say the truth and the 

knaves always lie. In one such problem there are three natives (A, B and C) and a foreigner 

who asks A, “Are you a knight or a knave?”. The answer of A is not understood. 

Afterwards B says “A said he is a knave”. Then C says “Do not believe B, he is a liar”. The 

question is, what are B and C? Now, instead of asking students to directly find the solution 

of the problem, one may ask them in a first moment, to describe the situation using natural 

language. In the example just given, the description may be given by considering true the 

following two biconditionals: 1) B is a knight if and only if (iff) A said he himself was a 

knave, and 2) C is a knight iff B is a knave. Now, the arriving to these two biconditionals is 

not a matter of translation. There has been some logical thinking to arrive to them, i.e. the 

students have considered what B and C have said in the light of the hypotheses that there 

two type of people in the island, etc. Moreover, 1) can be reworked to obtain 1’) B is a 

knight iff (A is a knight iff A is a knave). The author believes that these workings are very 

important in the teaching of logic. Afterwards, in a second moment, students may proceed 

to obtain translations (or formalizations or symbolizations or whatever we call them). In our 

example, we get  that the following two biconditional formulas should be taken as true: q 

↔ (p ↔ ¬ p) and r ↔ ¬ q, where p, q and r stand respectively for “A is a knight”, “B is a 

knight” and “C is a knight”. And, again, afterwards, i.e. in a third moment, the students 

may be asked to calculate the solution of the problem. In examples like the one just given it 

seems also relevant to call the students attention to the fact that in this way it is possible to 

formalize what the speakers say also when they say something about what the others have 

said. 

 

 

5. TEACHING NATURAL DEDUCTION 

 

 Teaching Natural Deduction at an introductory course poses some difficulties. One 

of them is that the student has to choose between many rules. In order to simplify the 

situation, the author provides the following analogical situation he has found in [11]. There 

are three containers of, respectively, 8, 5 and 3 liters. The first is full of (say) water and the 

other two are empty. The goal is to divide the 8 existing liters in two parts (of 4 lts. each). 

But the containers do not have any level-indicators, so all one is allowed to do is to either 

fill or empty  a container choosing the appropriate move each time until one reaches the 

goal. The analogy with a derivation is the following: the initial situation may be abstracted 

by the triple (8, 0, 0) and is like a formula given as hypothesis, the goal is the triple (4, 4, 0) 

that is like the formula that has to be derived and the moves of filling or emptying are like 

Natural Deduction rules. Students usually get engaged to this problem with fun. Then they 

are told that derivations are like sequences of triples, but instead of having to choose 

between only two moves, they will have to select the appropriate rule between many of 

them. 
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Anyway, the author has had a good experience distinguishing several stages in the 

teaching of Natural Deduction, both because it may be pedagogically convenient that the 

student does not have to deal simultaneously with all the rules, and also because it is an 

adequate situation to present several non-classical logics. The author distinguishes seven 

stages: conjunction, conjunction and disjunction, distributive, positive, minimal, 

intuitionistic and classical logic. 

Conjunction logic is given by just the usual Introduction and Elimination rules for 

conjunction. Exercises are deriving associativity, commutativity and idempotence. 

The conjunction and disjunction stage is obtained restricting the usual Elimination 

of Disjunction rule (ϕ ∨ ψ, [ϕ]…χ, [ψ]…χ / χ) in the following way: in the two sub-

derivations it is not allowed to use additional hypotheses other than the two sub-formulas of 

the disjunction being eliminated, e.g. in the sub-derivation [ϕ]…χ one can only use ϕ as 

hypothesis. This prevents distribution. In fact, people conversant with algebraic logic, may 

easily notice that the allowing for other hypotheses is equivalent to distribution. 

Distributive logic is obtained strengthening the Elimination rule for disjunction, 

allowing for additional hypotheses in the sub-derivations, i.e. using the usual Elimination of 

disjunction rule. 

After introducing the usual rules for the conditional we get Positive Logic and now 

derivable formulas without hypotheses are for the first time available.  

An easy exercise at this stage is to derive the (usual) strengthened form of the 

Elimination of disjunction rule and distribution using the weaker form (used in the 

Conjunction and Disjunction Logic) and the rules for the conditional. This is an example of 

a non-conservative extension, that is, the conditional rules allow for deriving formulas that 

do not involve the conditional. A positive example of a conservative extension is adding 

disjunction to conjunction. This concept is the notion involved in the question sometimes 

posed by students whether derivations of exercises involving only certain connectives can 

be given just using the rules for those connectives, so at least the teacher should clearly 

understand what is behind those questions. A common situation is the perception that 

formulas like Peirce Law though having the conditional as only connective cannot be 

obtained just using the rules in conditional logic (i.e. the logic with language {→} and the 

usual Introduction and Elimination rules for the conditional), but also require e.g. the 

classical negation rules. This fact can be rigorously proven considering the valuation that 

comes from the Heyting Algebra H3, that is, defining a three valued valuation for the 

conditional and observing that the conditional logic rules preserve the top (this is perhaps 

easier if the Introduction rule is axiomatized in the usual way) but Peirce Law gets a value 

distinct from the top. 

Minimal Logic is obtained by adding the usual Introduction and Elimination rules 

for negation. It is to be noted that in this way negation is not really defined, as it is easy to 

see that there is some circularity between negation and the absurdo, which is not yet enough 

to derive every formula. This is perhaps the right moment to introduce the concept of 

univocal connective. We say that the n-ary connective k is univocal in the logic L iff 

kϕ1…ϕn �� k´ϕ1…ϕn, where k´ has analogous rules to k. Easy exercises are seeing that 

conjunction, disjunction and the conditional are univocal in positive logic. Let us see this in 

the case of conjunction. The following derivation (together with the reciprocal analogous 

derivation) proves that conjunction is univocal: 
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1. ϕ ∧ ψ Hyp 

2. ϕ  E ∧, 1 

3. ψ  E ∧, 1 

4. ϕ ∧´ ψ I ∧´, 2, 3 

 

In the case of minimal logic, it is also easy to see with appropriate valuations that negation 

is not univocal. Then it can also be easily seen that negation is univocal in intuitionistic 

logic, thus showing perhaps the crucial difference between minimal and intuitionistic logic. 

When introducing intuitionistic logic it may be useful to note that in the context of 

minimal logic the usual EASQ rule is both equivalent to the traditional Modus Tollendo 

Ponens and to Robinson Resolution, i.e., ϕ ∨ ψ, ¬ ϕ ∨ χ / ψ ∨ χ. The latter may be relevant 

in the case of students interested in Computer Science. 

In the case of classical logic it seems unavoidable to say something regarding the 

distinction between constructive and non-constructive proofs. 

As an example of a paraconsistent logic that could be presented we mention P1. 

This logic can be seen as the fragment of classical logic with language {→, ¬}, the usual 

Introduction and Elimination Rules for the conditional and the rules [¬ϕ] …¬ψ, [¬ϕ] … 

¬¬ψ / ϕ and ϕ → ψ / ¬¬ (ϕ → ψ) for negation. Stating its rules may not be enough to 

motivate a logic, but we just mean to say that the Natural Deduction setting allows for an 

easy presentation of many non-classical logics. 

Now, let us face the constructions of derivations. There is an interesting coin-puzzle 

that can be presented to the students because of some analogy in its solution with the 

construction of Natural Deduction derivations. It appears e.g. in chapter 2 in [6]. Let us 

place eight coins in a row (it will be more neat if we take coins of equal size). The goal is to 

arrange them in four piles of two coins each pile, but this has to be achieved in four 

movements, where each movement means jumping with one coin (in any direction) exactly 

over two coins (these coins may either be separated or already in the same pile) and placing 

the coin above the next coin (not yet doubled). Now, the interesting point is that if one tries 

to solve the puzzle “upwards-downwards”, i.e. trying to obtain the four piles from the 

starting point, one may last a long time. If, instead, the person thinks “downwards-

upwards”, i.e. puts himself in the goal situation and asks himself “how could I arrive to this 

situation?” the problem becomes trivial! The analogy with derivations is that in many cases 

the process of constructing derivations is more easily dealt with if one proceeds 

“downwards-upwards”, i.e. asks himself “by what rule could I naturally arrive to certain 

formula?” The answer is usually given by selecting the introduction rule of the main 

connective of the goal-formula. 

The concepts of univocal connective and conservative extension may perhaps be 

taught only at special occasions e.g. especially interested students that want to achieve a 

better understanding of the subject. They may be especially relevant if the teacher is 

interested in the teaching of non-classical logics. People interested in Philosophy are 

reminded that e.g. Belnap and Dummett consider the concepts of univocity and 

conservative extensions respectively in [1] and [3] (in the latter case see p. 217-220 and p. 

246-247). In the paper [4] the concepts of univocal connective and conservative extension 

are presented in detail in a toy situation, i.e. when adding conjunction to a logic just 

consisting of propositional letters. 
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When teaching Natural Deduction it may also be convenient to mention the 

relationship with the algebraic approach to logic. The field of Algebra of Logic is very 

sophisticated and has been very fruitful in the XXth Century. One connection not difficult 

to state is between the notion of supremum and the concept of disjunction, because it is 

easy to define supremum in the context of a partially ordered set and this definition 

corresponds directly to the introduction and elimination rules for disjunction. Also it is easy 

to see in intuitionistic logic that absurdo works like a minimum (note by the way that the 

supremum is also the minimum of certain set). The relationship between infimum and 

conjunction is not so direct in the case of the usual Gentzen introduction rule for 

conjunction. 

In Natural Deduction there is also the basic distinction between first-level and 

second-level rules of inference. The reader interested in this question may read [7]. 

 

 

6. ANALYTIC TABLEAUX 

 

Natural Deduction in not appropriate for classical logic, because derivations become 

cumbersome, especially in the case of classical predicate logic. On the contrary, analytic 

tableaux are very convenient for classical logic. This method has the advantage of 

systematically looking for a derivation or a counter-example (it should be made clear that 

soundness and completeness taken together are equivalent to the existence of either a 

derivation or a counter-model). Of course, in the case of propositional logic one has 

decidability. In the case of the quantifier rules it is natural to expect finite terminating 

tableaux in the case of finitely-satisfiable sets of formulas, something that does not happen 

e.g. in the very popular case of the D-rules in [12] (see p. 53-54). Regarding this question 

the reader may profitably read [2], where the mentioned D-rules are slightly changed in 

order to get the desired finitely terminating Tableaux.  

 

 

7. TERMINOLOGY 

 

Nomenclature aspects may be important especially for first year students. These 

students are usually not prepared for usual natural language words used as technical 

terminology not having the usual natural language meaning. Also, in some cases, the words 

used as technical terminology are not the best choices. For example, the author thinks it is 

better to use the expressions “derivable formula” and “derivation” instead of “theorem” and 

“proof”, because he thinks that the latter are vestiges of logicism that may be confusing, 

reserving the latter expressions for the soundness theorem or alike mathematical facts and 

their proofs. As another example, it is better to abbreviate the intuitionistic rule with 

“EASQ” (where “A” stands for absurd) instead of EFSQ (where “F” stands for false). 

 Another question, partially terminological, is that the expression “counter- model” 

is very usual in predicate logic. Analogously, the expression “counter-valuation” may prove 

useful when teaching propositional logic, where the student should be trained to be able to 

either find a derivation or a counter-valuation. Also, as a general rule, it may be important 

to distinguish between “counter-examples” and “non-examples”, the former referring to 

objects that make false certain statement and the latter referring to objects that do not fall 

under certain concept. For example, according to the usual definition, the expression (p is a 
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a non-example of a formula, that is, it is an expression that is not a formula. But 2 is a 

counter-example of the statement that every prime is odd. 

             A terminological point that has connections with philosophical aspects of logic is 

the use of the words “soundness” and “completeness” for the  usual theorems in 

propositional and predicate logic. It seems to be a good idea to call the students attention to 

the historical fact that the previously mentioned words where chosen because the semantic 

approach to logic was given priority over the syntactical approach. Now, this priority is not 

a mathematical fact, e.g. there is no theorem asserting this priority. There are for instance 

some logicians that have warned that e.g. syntactical rules should not necessarily be 

considered meaningless. So, we have here a philosophical question some people may find 

interesting and over which much has been written. 

 We insert in this section a brief remark regarding non-monotonic reasoning. The 

author believes it is very important to mention the fact that usual daily reasoning is up to 

certain extent non-monotonic, whereas classical logic and the non-classical fragments 

mentioned in this paper  are monotonic, including schemes such as ψ → (ϕ → ψ) that seem 

puzzling to students. But, unfortunately, it seems impossible to include material on non-

monotonic reasoning in the usual introductory courses to logic. It is probably a good idea to 

restrict oneself to the usual Tweety example. 

 

 

8. WHAT ABOUT THE FUTURE? 

 

 How shall we be teaching logic in the future? Will we still teach classical logic? 

Will we be doing it in the same way we usually do it now? These and similar questions 

arise naturally. The author’s guess which probably most readers will agree with is that 

classical logic will always have a predominant role in the basic teaching of logic. But the 

author’s opinion regarding the teaching of non-classical logics, is that many of them that 

are fragments of classical logic are at least in part quite easily dealt with in the context of 

classical logic. The author has already given an idea of his procedure in the section of this 

paper dedicated to Natural Deduction and the concepts of univocity and conservative 

extension are some of the relevant notions involved in the classification of non-classical 

logics. Regarding the third question the author believes that perhaps the recent algebraic 

developments of logic will also have an important role in the future teaching of logic. But, 

as logicians seem to be endlessly refining their settings, a final solution is never to be 

expected. 
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