Cardiac autonomic modulation during different modes of weaning of mechanical ventilation

  • Marcelle Guerra Laboratório de Delineamento de Estudos e Escrita Científica do Centro Universitário Saúde ABC, Santo André, SP
  • Juliana Zangirolami-Raimundo Laboratório de Delineamento de Estudos e Escrita Científica do Centro Universitário Saúde ABC, Santo André, SP
  • George Jerre Vieira Sarmento Coordenador do Serviço de Fisioterapia do Hospital São Luiz/Rede D’or – Unidade Jabaquara, SP
  • Renata Salatini Clínica Cirúrgica, Faculdade de Medicina da USP, São Paulo, SP
  • Pammela de Jesus Silva Universidade de São Caetano, São Caetano do Sul, SP
  • Rodrigo Daminello Raimundo Laboratório de Delineamento de Estudos e Escrita Científica. Centro Universitário Saúde ABC. Santo André. São Paulo
Keywords: autonomic nervous system, heart rate of weaning, ventilatory weaning


Introduction: Heart rate variability (HRV) is a noninvasive method to analyze variations of time intervals between heart beats. HRV is a promising method to analyze autonomic balance quantitatively. During the weaning process of mechanical ventilation, alterations occur in the autonomic activity. Methods to identify increased risk for weaning failure are needed. Objective: To analyze the behavior of cardiac autonomic modulation in different phases of weaning mechanical ventilation. Methods: Cardiorespiratory parameters (SBP, DBP, MAP, RR, SpO2) of 18 participants were collected and a cardio-frequency meter was placed. The subjects were kept in supine Fowler's position t, ventilating for 10 minutes in the assist-controlled (A/C) ventilation mode the synchronized intermittent mandatory ventilation (SIMV) mode, pressure support ventilation (PSV) 18 and 10, and with nebulization through a T-piece. At the end of all ventilator modes, the pre-specified variables were measured. The HRV parameters were analyzed in the domains of time, frequency and geometric indexes. Results: There was an increase in the mean rMSSD of the A/C moment of 20.67 ± 19.36ms for the PSV 10 time 29.96 ± 21.26ms (p = 0.027), increase between the SIMV moments of 24.04 ± 18.31ms and PSV 10 to 29.96 ± 21.26ms (p = 0.042), but reduced between PSV 10 and T-Tube moments 21.22 ± 13.84ms (p = 0.035). There was an increase in the LF mean of the SIMV moments 158.46 ± 229.77ms2 and PSV 10 265.50 ± 359.88ms2 for T-tube 408.92 ± 392.77ms2 (p = 0.011 and p = 0.037 respectively). The mean LF showed a decrease between C/A and SIMV moments, respectively, 62.48 ± 17.99nu and 54.29 ± 15.29nu (p = 0.024), increase in SIMV moments 54.29 ± 15.29nu and PSV 10 55.05 ± 23.07nu for TUBE T 65.57 ± 17.08nu (p = 0.049 and p = 0.027 respectively). HF increased between SIMV moments 162.89 ± 231.19ms2 and PSV 10 247.83 ± 288.99ms2 (p = 0.020) and also between SIMV and T-Tube moments 248.28 ± 214.46 ms2 (p = 0.044). There was a reduction in mean HF between PSV 10 times 44.71 ± 22.95nu and T-tube 34.22 ± 17.03nu (p = 0.026). Conclusions: The present study showed that in comparison with spontaneous breathing, controlled breathing was associated with lower HRV during weaning from mechanical ventilation.


Download data is not yet available.


1. Chiappa AMG, Chiappa GR, Cipriano G Jr, Moraes RS, Ferlin EL, Borghi-Silva A, et al. Spontaneous breathing trial in T-tube negatively impact on autonomic modulation of heart rate compared with pressure support in critically ill patients. Clin Respir J. 2017;11(4):489-495. DOI:

2. Arcentales A, Caminal P, Diaz I, Benito S, Giraldo BF. Classification of patients undergoing weaning from mechanical ventilation using the coherence between heart rate variability and respiratory flow signal. Physiol Meas. 2015;36(7):1439-52. DOI:

3. Goldwasser R, Farias A, Freitas EE, Saddy F, Amado V, Okamoto V. Desmame e interrupção da ventilação mecânica. J Bras Pneumol. 2007;33(Suppl 2):128-36. DOI:

4. Seely AJ, Bravi A, Herry C, Green G, Longtin A, Ramsay T, et al. Do heart and respiratory rate variability improve prediction of extubation outcomes in critically ill patientes? Critical Care. 2014;18(12):R65. DOI:

5. Sin DD, Wong E, Mayers I, Lien DC, Feeny D, Cheung H, et al. Effects of nocturnal noninvasive mechanical ventilation on heart rate variability of patients with advanced COPD. Chest. 2007;131(1):156-63. DOI:

6. Srivastava S, Chatila W, Amoateng-Adjepong Y, Kanagasegar S, Jacob B, Zarich S, et al. Myocardial ischemia and weaning failure in patients with coronary artery disease: an update. Crit Care Med. 1999;27(10):2109-12. DOI:

7. Valipour A, Schneider F, Köessler W, Saliba S, Burghuber OC. Heart rate variability and spontaneous baroreflex sequences in supine healthy volunteers subjected to nasal positive airway pressure. J Appl Physiol. 2005;99(6):2137-43. DOI:

8. Hammash MH, Moser DK, Frazier SK, Lennie TA, Hardin-Pierce M. Heart Rate Variability as a predictor of cardiac dysrythmias during weaning from mechanical ventilation. Am J Crit Care. 2015;24(2):118-27. DOI:

9. Reis MS, Sampaio LM, Lacerda D, Oliveira LV, Pereira GB, Pantoni CB, et al. Acute effects of different levels of continuous positive airway pressure on cardiac autonomic modulation in chronic heart failure and chronic obstructive pulmonary disease. Arch Med Sci. 2010;6(5):719-27. DOI:

10. Shen HN, Lin LY, Chen KY, Kuo PH, Yu CJ, Wu HD, et al. Changes of heart rate variability during ventilator weaning. Chest. 2003;123(4):1222-8. DOI:

11. Tobin DD, Menon M, Menon M, Spatta BC, Hodges EV, Perry DG. The intrapsychics of gender: a model of self-socialization. Psychol Rev. 2010 A;117(2):601-22. DOI:

12. Frazier SK, Moser DK, Schlanger R, Widener J, Pender L, Stone KS. Autonomic tone in medical intensive care patients receiving mechanical ventilation and during a CPAP weaning trial. Biol Res Nurs. 2008;9(4):301-10. DOI:

13. Huang CT, Tsai YJ, Lin JW, Ruan SY, Wu HD, Yu CJ. Application of heart rate variability in patients undergoing weaning from mechanical ventilation. Crit Care. 2014;18(1):R21. DOI:

14. Sasaki K, Maruyama R. Consciously controlled breathing decreases the high-frequency component of heart rate variability by inhibiting cardiac parasympathetic nerve activity. Tohoku J Exp Med. 2014;233(3):155-63. DOI:

15. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology.Heart rate variability: standards of measurement, physiological interpretation and clinical use. Circulation. 1996;93(5):1043-65.

16. Pumprla J, Howorka K, Groves D, Chester M, Nolan J. Functional assessment of heart rate variability: physiological basis and practical applications. Int J Cardiol. 2002;84(1):1-14.

17. Vanderlei LCM, Silva RA, Pastre CM, Azevedo FM, Godoy MF. Comparison of polar S810i monitor and the ECG for the analysis of heart rate variability in the time and frequency domains. Braz J Med Bio Res. 2008;41(10):854-9. DOI:

18. Ribeiro JP, Moraes Filho RS. Variabilidade da Frequência cardíaca como instrumento de investigação do sistema nervoso autônomo. Rev Bras Hipertens. 2005;12(1):14-20.

19. Vanderlei LCM, Pastre CM, Hoshi RA, Carvalho TDias, Godoy MF. Noções básicas de variabilidade da frequência cardíaca e sua aplicabilidade clínica. Rev Bras Cir Cardiovasc. 2009;24(2):205-17. DOI:

20. Gamelin FX, Berthoin S, Bosquet L. Validity of the Polar S810 Heart Rate Monitor to Measure R-R Intervals at Rest. Med Sci Sports Exerc. 2006;38(5):887-93. DOI:

21. Terathongkum S, Pickler RH. Relationships among heart rate variability, hypertension, and relaxation techniques. J Vasc Nurs. 2004;22(3):78-82. DOI:

22. Tulppo MP, Mäkikallio TH, Seppänen T, Laukkanen RT, Huikuri HV. Vagal modulation of heart rate during exercise: effects of age and physical fitness. Am J Physiol. 1998;274 (2Pt 2):H424-9. DOI:

23. Aubert AE, Seps B, Beckers F. Heart rate variability in athletes. Sports Med. 2003;33(12):889-919. DOI:

24. Riad FS, Razak E, Saba S, Shalaby A, Nemec J. Recent heart rate history affects QT interval duration in atrial fibrillation. PLoS One. 2017;12(3):e0172962. DOI:

25. Nagaraj SB, Ramaswamy SM, Biswal S, Boyle EJ, Zhou DW, Mcclain LM, et al. Heart rate variability as a biomarker for sedation depth estimation in ICU patients. Conf Proc IEEE Eng Med Biol Soc. 2016;2016:6397-6400. DOI:

26. Kim CS, Kim MK, Jung HY, Kim MJ. Effects of exercise training intensity on cardiac autonomic regulation in habitual smokers. Ann Noninvasive Electrocardiol. 2017;22(5). DOI:

27. Bisschoff CA, Coetzee B, Esco MR. Relationship between Autonomic Markers of Heart Rate and Subjective Indicators of Recovery Status in Male, Elite Badminton Players. J Sports Sci Med. 2016;15(4):658-69.

28. Guerra M, Pidori Igreja T, Carvalho TD, Valenti VE, Abreu LC, Silva TD, et al. Heart Rate Variability During Weaning Mechanical Ventilation. J Cardiol Ther. 2016; 3(3):519-22.

29. Vitacca M, Scalvini S, Volterrani M, Clini EM, Paneroni M, Giordano A, et al. In COPD patients on prolonged mechanical ventilation heart rate variability during the T-piece trial is better after pressure support plus PEEP: a pilot physiological study. Heart Lung. 2014;43(5):420-6. DOI:

30. Astorino TA, Robergs RA, Ghiasvand F, Marks D, Burns S. Incidence of the oxygen plateau at VO2max during exercise testing to volitional fatigue. J Exerc Physiol. 2000;3(4):1-12.