Dietary habits, anthropometric and metabolic profile of adolescents born prematurely

  • Mírian Nara Lopes Unidade Saúde da Família Santo Onofre, Secretaria Municipal de Saúde de Cascavel (SMS) Cascavel (PR), Brasil
  • Sabrina Grassiolli Centro de Ciências Biológicas e da Saúde, Departamento de Ciências Biológicas Universidade Estadual do Oeste do Paraná (UNIOESTE) – Cascavel (PR), Brasil
  • Maria de Lá Ó Ramalho Veríssimo Departamento de Enfermagem Materno-Infantil e Psiquiátrica, Escola de Enfermagem, Universidade de São Paulo (USP) – São Paulo (SP), Brasil
  • Beatriz Rosana Gonçalves de Oliveira Toso Centro de Ciências Biológicas e da Saúde, Departamento de Ciências Biológicas Universidade Estadual do Oeste do Paraná (UNIOESTE) – Cascavel (PR), Brasil
  • Pamela Talita Favil Centro de Ciências Biológicas e da Saúde, Departamento de Enfermagem, Universidade Estadual do Oeste do Paraná (UNIOESTE) - Cascavel (PR), Brasil
  • Ana Cláudia Ramos de Paula Centro de Ciências Biológicas e da Saúde, Departamento de Enfermagem, Universidade Estadual do Oeste do Paraná (UNIOESTE) - Cascavel (PR), Brasil
  • Cláudia Silveira Viera Centro de Ciências Biológicas e da Saúde, Departamento de Enfermagem, Universidade Estadual do Oeste do Paraná (UNIOESTE) - Cascavel (PR), Brasil
Keywords: Infant, Premature, Adolescent Health, Adolescent Nutrition, Feeding Behavior, Cardiovascular Diseases, Metabolic Syndrome X

Abstract

Introduction: Prematurity may be related to the early onset of obesity and metabolic syndrome in adolescence. Breastfeeding and feeding are crucial factors in the genesis of cardio metabolic risk.

Objective: To analyze the relationship between the type of breastfeeding and eating habits with the blood pressure, lipid, glycemic and anthropometric profile of adolescents born prematurely.

Methods: Cross-sectional study with 50 adolescents born prematurely in western Paraná, Brazil, aged 10 to 19 years. Data on birth, breastfeeding and feeding were evaluated using the 24-hour Food Consumption Marker. Weight, height, abdominal circumference (AC), blood pressure (BP) were verified; concentrations of glucose, total cholesterol (TC) and triglycerides (TG) were measured by capillary puncture. Data analysis using descriptive statistics and analysis of variance.

Results: Out of total, 78%   eat in front of screens and 52% do not take the main meals during the day. Regardless of the amount of meals a day, the lipid, glycemic and AC profiles did not show a statistically significant difference between the groups. There is a statistically significant association between BP and number of meals (p = 0.01), TC and breastfeeding (p = 0.03) and TG with consumption of sausages (p = 0.02) and products rich in carbohydrates (p = 0.01). Most of them (72%) consumed cow’s milk before completing one year and only 30% received exclusive breastfeeding until the age of six months. Related other values, 30% had high BP, 22% and 41% high TC and TG, respectively. Of the 30% overweight, 60% had high BP, 53% high TG, 33% high TC and 33% percentile AC ?90.

Conclusion: Breastfeeding did not influence the metabolic profile, but it was evidenced as risk factors for adolescents to develop future cardiovascular problems due to prematurity, inadequate eating habits, overweight, abdominal circumference, and alterations in both blood pressure and lipid profile. 

Downloads

Download data is not yet available.

References

1. World Health Organization (WHO). Born too Soon: the global action report on preterm birth [internet] 2012. [cited 2020 May 12] Available from: http://www.who.int/pmnch/media/news/2012/201204_borntoosoon-report.pdf

2. Blencowe H, Cousens S, Chou D, Oestergaard M, Say L, Moller AB, et al. Born Too Soon: The global epidemiology of 15 million preterm births. Reprod Health. 2013;10(1):S2. DOI: http://doi.org/10.1186/1742-4755-10-S1-S2

3. Cristofalo EA, Schanler RJ, Blanco CL, Sullivan S, Trawoeger R, Kiechl-Kohlendorfer U, et al. Randomized trial of exclusive human milk versus preterm formula diets in extremely premature infants. J Pediatr. 2013;163(6):1592-95. DOI: http://doi.org/10.1016/j.jpeds.2013.07.011

4. Lafeber NH, Lagemaat M, Rotteveel J, Weissenbruch M. Timing of nutritional interventions in very-low-birth-weight infants: optimal neurodevelopment compared with the onset of the metabolic syndrome. Am J Clin Nutr. 2013;98(suppl):556S-60. DOI: http://doi.org/10.3945/ajcn.112.045039

5. Boersma B, Wit JM. Catch-up growth. Endocr Rev. 1997;18(5):646-61. DOI: http://doi.org/10.1210/edrv.18.5.0313

6. Sipola-Leppänen M, Vääräsmäki M, Tikanmäki M, Matinolli HM, Miettola S, Hovi P, et al. Cardiometabolic risk factors in young adults who were born preterm. Am J Epidemiol. 2015;181(11):861-73. DOI: http://doi.org/10.1093/aje/kwu443

7. Villalobos J, Velasquez ME, Farias A, Mejias A. Crecimiento, nutricion temprana y riesgo de diabetes y sindrome metabolico. Arch Venez Puer Ped. 2014;77(3):154-61.

8. Alves JF, Britto RP, Ferreira HS, Sawaya AL, Florêncio TM. Evolution of the biochemical profile of children treated or undergoing treatment for moderate or severe stunting: consequences of metabolic programming? J Pediatr (Rio J). 2014;90(4):356-62. DOI: http://doi.org/10.1016/j.jped.2013.12.007

9. Moura AS. Janelas críticas para programação metabólica e epigênese transgeracional. In: Kac G, Sichieri R, Gigante DP. Epidemiologia nutricional. Rio de Janeiro: FIOCRUZ, Atheneu, 2007; p. 543-51.

10. Vickers MH. Developmental programming of the metabolic syndrome - critical windows for intervention. World J Diabetes. 2011;2(9):37-148. DOI: http://doi.org/10.4239/wjd.v2.i9.37

11. International Diabetes Federation (IDF). IDF consensus definition of the metabolic syndrome in children and adolescents [internet] 2007 [cited 2020 May 12] Available from: https://d-net.idf.org/en/library/165-idf-consensus-definition-metabolic-syndrome-in-children-and-adolescents.html

12. Sociedade Brasileira de Diabetes (SBD). VI Diretrizes da Sociedade Brasileira de Diabetes (2015-2016) [internet] 2016. [cited 2020 May 12] Available from: http://www.diabetes.org.br/profissionais/images/docs/DIRETRIZES-SBD-2015-2016.pdf

13. Jong M, Lafeber HN, Cranendonk A, Weissenbruch MM. Components of the Metabolic Syndrome in Early Childhood in Very-Low-Birth-Weight Infants. Horm Res Paediatr. 2014;(81):43-9. DOI: http://doi.org/10.1159/000355597

14. Barker DJP, Eriksson JG, Forsén T, Osmond C. Fetal origins of adult disease: strength of effects and , basis. Int J Epidemiol. 2002;31(6):1235-9. DOI: http://doi.org/10.1093/ije/31.6.1235

15. Zangirolami-Raimundo J, Echeimberg JO, Leone C. Research methodology topics: Cross-sectional studies. J Hum Growth Dev. 2018;28(3):356-60. DOI: http://dx.doi.org/10.7322/jhgd.152198

16. Goldenring JM, Cohen E. Getting into adolescent heads. Contemp Pediatr. 1988;37(5):75-90.

17. Brasil. Ministério da Saúde. Orientações para avaliação de marcadores de consumo alimentar na atenção básica. Brasília: Ministério da Saúde, 2015.

18. Malachias MVB, Souza WKSB, Plavnik FL, Rodrigues CIS, Brandão AA, Neves MFT, et al. 7ª Diretriz Brasileira de Hipertensão Arterial. Arq Bras Cardiol. 2016;107(3 suppl 3):1-83.

19. Brasil. Ministério da Saúde. Caderneta de saúde do adolescente. 2 ed. 1. reimp. Brasília: Ministério da Saúde, 2012.

20. Accu-Chek® Active. Roche Diagnostics GmbH. Dispositivo Médico de Diagnóstico in vitro [internet] 2013. [cited 2020 May 12] Available from: https://www.accu-chek.com.br/

21. Sociedade Brasileira de Análises Clínicas (SBAC). Consenso Brasileiro para a Normatização da Determinação Laboratorial do Perfil Lipídico [internet] 2016. cited 2020 May 12] Available from: http://www.sbpc.org.br/upload/conteudo/consenso_jejum_dez2016_final.pdf

22. Wojcicki JM, Heyman MB. Reducing Childhood Obesity by Eliminating 100% Fruit Juice. Am J Public Health. 2012;102(9):1630-3. DOI: http://doi.org/10.2105/AJPH.2012.300719

23. Veiga GV, Costa RS, Araújo MC, Souza AM, Bezerra IN, Barbosa FS, et al. Inadequação do consumo de nutrientes entre adolescentes brasileiros. Rev Saúde Pública. 2013;47(supl 1):212s-21. DOI: http://dx.doi.org/10.1590/S0034-89102013000700007

24. Oliveira JS, Barufaldi LA, Abreu GA, Leal VS, Brunken GS, Vasconcelos SML, et al. ERICA: uso de telas e consumo de refeições e petiscos por adolescentes brasileiros. Rev Saúde Pública. 2016;50(supl 1):7s. DOI: https://doi.org/10.1590/S01518-8787.2016050006680

25. Barufaldi LA, Abreu GA, Oliveira JS, Santos DF, Fujimori E, Vasconcelos SML, et al. ERICA: prevalência de comportamentos alimentares saudáveis em adolescentes brasileiros. Rev Saúde Pública. 2016;50(supl 1):6s. DOI: https://doi.org/10.1590/s01518-8787.2016050006678

26. Wansink B, van Kleef E. Dinner rituals that correlate with child and adult BMI. Obesity (Silver Spring). 2014;22(5):E91-5. DOI: https://doi.org/10.1002/oby.20629
Published
2020-06-17
Section
ORIGINAL ARTICLES